INDIAN ASSOCIATION FOR THE CULTIVATION OF SCIENCE
Jadavpur, Kolkata 700 032, India.

Professor Soumitra SenGupta

Dean (Academic & Students Affairs) Phone : 2473 4971, 3372, 3073, 5374
and Senior Professor Fax: (91) (33) 2473 2805
Department of Theoretical Physics E-mail : tpssg@iacs.res.in

Dtd. 10.10.2015
TO WHOM IT MAY CONCERN

Animikh Roy is known to me for last three years during which he has been engaged in
different internship programme with me over a period of nearly one year.

His area of work with me was based on ‘Aspects of General Theory of Relativity and black
holes'. During this study Animikh has covered the following topics: Tensors in curved space
time, Riemannian geometry, Einstein's equation, Tests of Einstein's theory, black hole
solutions, Kruskal coordinates, black holes, Penrose diagramme. In this short time Animikh
has learned most of the essential ideas in this area very well which is indeed very
commendable.

| was extremely impressed with his performance as he did all the calculations independently
and raised many critical questions which reflected his strong analytic mind. He is a very
intelligent and hard working student and through my long interactions with him on various
science topics, | can recognize that Animikh has a strong potential to become a valuable
researcher in the field of Theoretical Physics and interdisciplinary sciences.

Animikh is very interactive and has the ability to communicate his thoughts very clearly. He
can present his works with confidence and can plan future directions. In fact currently he is
engaged in a study on 'Consciousness' from both Physics and biological approaches at the
National Institute for Advanced studies (NIAS) in Bangalore, India. For this, he not only
applies his Physics knowledge in quantum mechanics but also undertakes some further
studies in neurobiology at the National Centre for Biological Sciences (NCBS) at Bangalore. |
believe that such complex issues can only be resolved using the methods of such different
and complimentary areas of science.

This interdisciplinary approach is his valuable quality and | strongly hope that he will turn out
to be a very competent scientist in coming days.

In addition to these Animikh has a nice personality who can work in a group with a positive
mind. Moreover, | found that he is never afraid of taking new challenges.

At this stage Animikh needs to be in a vibrant and inspiring Graduate programme in one of the
well-known universities and | am sure that he will be a valuable addition as a student.

| therefore have no hesitation in recommending him very strongly for Graduate studies in the
department of Physics of your University.

Yours sincerely,

e SEDE
'

Soumitra SenGupta



PHYSICS
OF
BLACK HOLES

Animikh Roy

Indian Association for the Cultivation of Science

Advisor: Prof. Soumitra Sengupta



ABSTRACT

This project mostly focuses on a theoretical development of the aspects of Black Hole
mechanics and thermodynamics. It involves an overall glimpse on the preliminary
ideas including the fundamental Equivalence Principle, the description of Flat to
Curved Space-time, the physical basis of the Geodesic equation, followed by brief ideas
about the Riemann Curvature Tensor, Einstein Field Equations, the Schwarzschild
metric, Kruskal-Szekeres coordinates and Penrose diagrams. However, the prime focus
of this project include the study and theoretical analysis of charged Black Holes with
the help of Reissner-Nordstrom coordinates and rotating Black Holes involving the
Kerr solution and the Penrose Process. The Final portion of this project deals with the
Penrose diagrams of each individual solution along with the Penrose Process of Energy
Extraction, which paves a path for a thermodynamic approach of studying Black Hole
phenomenology.
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INTRODUCTION

General relativity or the general theory of relativity is a geometric view on the Theory
of gravitation published by Albert Einsteinin 1916. It is currently regarded as the most
accurate description of gravitation in modern physics. General relativity generalises special
relativity and Newton's law of universal gravitation and provides a unified description of
gravity as a geometric property of space and time. In particular, the curvature of space-time is
directly related to the energy and momentum of whatever matter and radiation are present.
The predictions of general relativity have been confirmed in all observations and experiments
to date. General Relativity has been accurately tested in the solar system. It underlies our
understanding of the universe on the largest scales and is central to the explanation of such
frontier astrophysical phenomena as gravitational collapse, black holes and the big bang
theory. Although General relativity is not the only relativistic theory of gravity, it is
the simplest and the most elegant geometric theory that is consistent with experimental data.

This project will mainly focus on the idea that Gravity is the geometry of four-dimensional
curved Space-time; including the elegant description of curved Space time in relation to Local
inertial frames and Geodesics. In order to lay the foundation to study Black Holes in detail we
shall explore the concept of the curvature tensor and derive Einstein’s field equations from
the Principle of Action. Essentially we shall deal with the development of ideas about the
charged and rotating Black Holes along with their various characteristic features; starting
from the Schwarzschild solution for spherically symmetric gravitational collapse, we shall
investigate up to the Kerr solution along with all their respective Penrose diagrams. In the
final section we shall also deal with the Penrose process of Energy extraction from rotating
Black Holes which leads to a thermodynamic approach to study this unique compact object.

In a nutshell before going into details, we know that Black holes are the most fascinating
objects predicted by general relativity. A black hole is an object so dense that it sufficiently
bends the space-time around it so that nothing can escape. In other words, if an object is so
dense that its escape velocity is greater than the speed of light, then nothing can escape the
gravity of that object and it is called a black hole. The maximum distance from the center of
the black hole for which nothing can escape is called the event horizon. There exist about 20
confirmed candidates for astrophysical Black Holes in the mass range 5 - 20 M©® and about
three dozen super massive Black Hole candidates in the mass range 106 - 109.5 MQ.
Unfortunately, there exists as yet no direct evidence for astrophysical Black Holes. At present
we only hope that the black-hole paradigm may be proved or ruled out by comparing Black
Hole candidates with credible alternatives. Fortunately, Black Holes are dark and compact,
which narrows the list of possible alternatives among standard astrophysical objects. So let us
now consider the origin of this wonderful concept leading to a richer and more profound
understanding of our Universe through the study of Gravity and its physical and Mathematical
build-up in the hands of Einstein, Riemann, Schwarzschild and others.

Gravity introduces General Relativity in a different order. The simplest physically relevant
solutions are presented first followed by the observational consequences which have been
explored through the study of the motion of test particles and light rays in them. However,
this project mainly stresses on the physical and mathematical background leading to the
mechanics and thermodynamics of Black Holes.
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Chapter 1
GRAVITY AS GEOMETRY

Gravitational Mass and Inertial Mass

In dealing with the notion of Gravity, let us first consider the aspects of Gravitational mass and
Inertial Mass. A subtlety arises when we compare the law of universal gravitation with
Newton's second law of motion. The mass that appears in the law of universal gravitation is
the property of the particle that creates the gravitational force acting on the other particle; for
if we double m,, we double the force on m4. Similarly, the mass in the law of universal
gravitation is the property of the particle that responds to the gravitational force created by
the other particle. The law of universal gravitation provides a definition of gravitational
mass as the property of matter that creates and responds to gravitational forces. Newton's
second law of motion, F=ma, describes how any force, gravitational or not, changes the
motion of an object. For a given force, a large mass responds with a small acceleration and
vice versa. The second law provides a definition of inertial mass as the property of matter that
resists changes in motion or, equivalently, as an object's inertia. Is the inertial mass of an
object necessarily the same as its gravitational mass? This question troubled Newton and
many others since his time. Experiments are consistent with the premise that inertial and
gravitational mass are the same. We can measure the weight of an object by suspending it
from a spring balance. Earth's gravity pulls the object down with a force (weight) of my g,

where g is the local gravitational acceleration and m the gravitational mass of the object.

Uniform Gravitational Field Nonuniform Gravitational Field
(Earth’s surface)

*r A

ahor <a

vert

Fig.1(a)Compares uniform and non uniform Gravitational fields

Gravity's pull on the object is balanced by the upward force provided by the stretched spring.
We say that two masses that stretch identical springs by identical amounts have the same
gravitational mass, even if they possess different sizes, shapes, or compositions. But will they
have the same inertial mass? We can answer this question by cutting the springs, letting the
masses fall, and measuring the accelerations. The second law says the net force acting on the

mass is the product of the inertial mass, m;, and acceleration, a, giving us mg,g =

m;a or % = m;/mg, But g is a property of the Earth alone and does not depend upon which

object is placed at its surface, while experiments find the acceleration, a, to be the same for all
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objects falling from the same point in the absence of air friction. Therefore, g/a is the same for
all objects and thus for m;m,. We define the universal gravitational constant, G, to
makem; = m,.

The principle of the universality of free fall is the statement that all materials fall at the same
rate in a uniform gravitational field. This principle is equivalent to the statement that
m; = my,. Physicists have found the principle to be valid within the limits of their
experiments' precision, allowing them to use the same mass in both the law of universal
gravitation and Newton's second law.

Principle of Equivalence

There are several ways to formulate the Principle of Equivalence, but one of the simplest is
Einstein's original insight: he suddenly realized, while sitting in his office in Bern, Switzerland,
in 1907, that if he were to fall freely in a gravitational field, he would be unable to feel his own
weight. Einstein later recounted that this realization was the "happiest moment in his life", for
he understood that this idea was the key to how to extend the Special Theory of Relativity to
include the effect of gravitation. A little reflection will show that the law of the equality of the
inertial and gravitational mass is equivalent to the assertion that the acceleration imparted to
a body by a gravitational field is independent of the nature of the body. For Newton's equation
of motion in a gravitational field, written out in full, is:

(Inertial mass) . (Acceleration) — (Intensity of the gravitational
field) . (Gravitational mass).

It is only when there is numerical equality between the inertial and gravitational mass
that the acceleration is independent of the nature of the body. This constitutes the central
essence of the Principle of Equivalence which remains as one of the founding pillars of
General theory of Relativity.

The greatest importance of the Principle of Equivalence lies in the fact that at any local
region in space-time it is possible to formulate the laws governing various physical
principles neglecting the effect of gravity. This clearly indicates that special theory of
Relativity which does not involve gravity is valid in such regions of space-time. The above
explanation also clearly shows us that that inertial fields and gravitational fields are
equivalent and interchangeable from the point of view of the selected inertial frame and
the observer.

Clocks in a Gravitational Field

When comparing a clock under the influence of gravitational forces with one clock very far
from such influences it is found that the first clock is slow compared to the second. To see this
consider the same clock we used in the Special Theory of Relativity. For this experiment,
however, imagine that the clock is being accelerated upward, being pulled by a crane. The
clock gives off a short light pulse which moves towards the mirror at the top of the box, at the
same time the mirror recedes from the pulse with even increasing speed (since the box
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accelerates). Still the pulse eventually gets to the mirror where it is reflected, now it travels
downward where the floor of the box is moving up also with ever increasing velocity. On the
trip up the distance covered by light is larger than the height of the box at rest, on the trip
down the distance is smaller. A calculation shows that the whole distance covered in the trip
by the pulse is larger than twice the height of the box, which is the distance covered by a light
pulse when the clock is at rest. Thus we can conclude that time slows down under the
influence of intense gravitational fields as light bends under the influence of Gravity. Fig 1 (b)
Shows a thought experimental diagram to describe the gravitational slowing down of time as
described below.

miompared to a clock

on the top floor, a clock
on the ground floor is
l\ deeper in the Earth’s

~__ gravitational field and

[ so ticks more slowly.

(a) The gravitational slowing of time

Fig.1 (b)

Minkowski Space and Light Cones

Einstein’s physical intuition motivated his formulation of special relativity, but his
generalization to general relativity would not have occurred without the mathematical
formulation given by Hermann Minkowski. In 1907, Minkowski realized the physical notions
of Einstein’s special relativity could be expressed in terms of events occurring in a universe
described with a non-Euclidean geometry. Minkowski took the three spatial dimensions with
an absolute time and transformed them into a 4dimensional representation called space-
time.

The nature of Space-time is considered flat in Special Theory of Relativity and we shall
investigate how space-time curves under the influence of matter and gravity in the later
sections of the project. As of now in flat Minkowski Space-time we require 4 coordinates to
describe an event. These coordinates are usually taken to be a time coordinate and three
spatial coordinates. While we could denote these as (t, X, y, z) instead we use index
notations such as the following to denote the respective coordinates more frequently
(x%x1, x%, x3) where x° refers to the time coordinate. Here x is a positive 4-vector having the
dimensions of length. Additionally so that we have the same units for all coordinates, we
measure time in terms of space, by multiplying time with the speed of light such that x = c.t.
This Space-Time which Minkowski formulated is known as Minkowski-Space where we define
an invariant interval between two events a and b in space-time as:

§%=—(x - xg)z + (21 - xll,)2 + (22 - xlz,)2 + (23 - x,3,)2
8



So, ds?= —(dx®)?%+ (dx1)? + (dx?)? + (dx3)? (1.1)
It is invariant because another observer using the coordinate system (x’o ,x’l, x’z,x’3) would
measure the same interval, that is
ds’? = —(dx'®)" + (dx')" + (ax'?)" + (dx®)’

This invariant interval is analogous to distance in flat 3 dimensional space that we are
accustomed to. However this distance as we see can be negative. We separate the intervals
into three types:

ds* > 0 The interval is space-like

ds? < 0 The interval is time-like

ds? = 0 The interval is light-like

A space-like interval is one for which an inertial frame can be found such that two events are
simultaneous. No material object can be present at two events which are separated by a
space-like interval. However, a time-like interval can describe two events of the same material
object. If a ray of light could travel between two events then we say that the interval is light-
like.

The Space-time diagram which corresponds to the description of such various events
geometrically appear in the shape of a cone and is called a “Light-cone” as is represented
below:

timelike worldline
lightlike worldline

future
light

cone

event

/ _Spacelike curve

hypersurface of
simultaneity

light
cone / /

Fig.1 (c)

In the Fig.1(c) representing a Minkowski space-time diagram showing the past and future
light cones we have considered 2 dimensions of Space and 1 dimension of time. As illustrated
in the diagram, for a single object, we define the set of all past and future events of that object
as the worldline of that object. Thus, if two events are on the worldline of a material object,
then they are separated by a time-like interval. If two events are on the worldline of a photon,
then they are separated by a light-like interval.

The “hyper-surface” mentioned in the above diagram represent spatial snapshots of space-
time. Now in this figure the hyper-surface is 2 dimensional but in reality we consider 3
dimensional hyper surfaces for 4 dimensional space-time. The in the hyper-surface of
simultaneity all events occur with zero time like separation. Therefore all events only have
space like separation and they are causally disconnected. This means that considering the fact
that nothing can travel faster than the speed of light, whatever occurs in the region beyond
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the light cone occurs in the present. If they are on the same hyper-surface then they are
simultaneous, but even if they are not, every event is independent of each other and one’s
present state does not affect the future of another event.

Now using Einstein’s summation conventions we can write the above equation (1.1) as
ds* = 1), dx"dy" (1.2)
for u and v values of {0, 1, 2, 3} where we implement Einstein’s summation notation. This
notation is a simple way in which to condense many terms of a summation. For instance, the
above equation could be written as 16 terms:
ds? = Ngedx®dx® + No dx%dx! + Ngpdx’dx? + Ng3dx®dx3 + Nqedxdx® +...
(1.3)

3 3
Z Z N, dx"dy”
0 0

In Einstein’s summation notation we simply note that when a variable is repeated in the
upper and lower index of a term, then it represents a summation over all possible values. In
the above case, u and v are in the lower indices of 1 and the upper indices of x and so we know
to sum over all possible values of 4 and v, which in this case would give us 16 terms.

or more simply as

ds?

We mentioned that this is another expression for equation (1.1), but we see that equation
(1.1) only has four nonzero terms. Then we must constrain the values of I],,,, such that:

Moo 7o1 "o2 7o3 -1 000
Mo M1 M2 M3 0 100
= = 1.4
L M0 721 722 723 0 010 (1.4)
M0 731 7M32 733 0 001

The matrix I],, is referred to as the metric tensor for Minkowski space.

Curved Space-Time under Gravity

The deflection of light in a gravitational field
LA suggests that gravity is associated with the
curvature of space-time. To begin with the
concept of curved space-time and its
illustrations let us first consider two events on a
moving clock, separated by a time dt and a
distance dx, as seen relative to the system at
rest. We can illustrate the two events, and the
motion of the clock in a space-time diagram as
depicted in Fig. 1(d).
¥ Time is directed upwards in the diagram. The
Xl  motion of the clock corresponds to a world-line
in the diagram. The proper time interval dT is
the time betwee Figure 1(d) ;according to the moving clock, which is given by:
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2

dT? = dt? — (ﬂ>

c
Here c is the velocity of light. In the above limit as the speed of the clock approaches the speed

of light we have dx = cdt, and thus dT = 0.

A clock moving almost at the speed of light will thus almost not tick at all relative to the clocks
at rest. It is customary to choose the axes of the space-time diagram in such a manner
that motion at the speed of light corresponds to a line that is inclined at a 45° angle relative to
the axes of the diagram. At every point in the diagram we can then draw a little triangle, with a
90° opening angle, known as a light-cone. No material objects can travel faster than the
velocity of light, which means that the world-lines of objects must always be directed within
the local light-cone. Figure 1 (e)

In general relativity we have a curved space-time,
which we may illustrate by a curved surface with
little locally flat coordinate systems, known as
Minkowski systems, living on it as illustrated in
Fig.1(e)

The little coordinate systems on the surface work
precisely as the space-time diagram of Fig. 1(e). In
particular the worldliness of moving objects must
always be directed within the local light cone. To
find out how much a clock has ticked along its
winding world-line, we consider nearby events along the world-line and sum up the dT’s from
the above calculated relations for the local Minkowski Systems under consideration.
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Chapter 3
CURVED SPACE-TIME

Arriving At the Metric

So far we have shown that in flat Minkowski Space-time the distance between two events is
given by:

ds? =1, dx"*dy’ = dt? — dx? (2.1)
Also this interval between 2 events can be represented in terms of proper time as:
dT? =1, dx"dy" (2.2)

Where 1], is the matrix defined in the relation (1.4). However the essence of General
Theory is that Gravity creates curvature so to include gravity, we need to modify our
assumption of flatness (Minkowski space) and work in a more general curved space. Here the
interval between two events is given by:

ds® = g, dx"dy" (2.3)
Where g, is a symmetric 4x4, position dependent matrix (the metric). It has to be non-
singular so that g~ ! exists everywhere. The form of g,v Will be different in different
coordinate systems for the same geometry. Since there are 4 arbitrary functions involved in
transforming 4 coordinates, there are only 10-4 = 6 independent functions associated with a
metric.

The Summation Convention and Tensors

So far we have used a certain method in index notations that we shall follow throughout this
article. The outlining rules of this method are as follows:

1. The location of the indices must be respected: superscripts (upper indices) for

coordinates and vector components and subscripts (lower indices) for the metric. (In

x" . .
axL'ﬂ) dx'B, the superscript f in the

expressions such as the chain rule, dx% = (
denominator acts as a subscript.)

2. Repeated indices always occur in superscript-subscript pairs and imply summation.
For that reason they are called summation indices. One index is as good as any other
for indicating a summation, and for this reason summation indices are also called
dummy indices. Thus, gaﬁa“b’;means the same thing as gy,;ayb‘s . Expressions with
three or more repeated indices, such as g,,a“b® , or repeated indices that are not in
superscript-subscript pairs, such as g,g9g,, , will never occur.

3. Indices that are not summed are called free indices. They must balance on both sides of
an equation. The value of a free index can be changed if it is changed on both sides of
an equation at the same time. The equation:

Jap = 9Ba (2.4)
expresses the symmetry of the metric. The indices balance because there is one lower index, a
and S, on each side of the equation. An equation such as this can be thought of as a shorthand
for an array of equations for each of the four possible values of the free indices ¢ and

12



Equation (2.4) stands for the 16 equations:
9oo = Yoo, o1 = G10, Yoz = Y20, - (2.5)
910 = 9o, 911 = 911, 912 = 921, -~
For this reason, a free index can be changed to another free index (not already tied up in a
summation) provided it is changed on both sides of an equation at the same time. Changing 8
to y in (2.3) gives g4y = g, Wwhich represents the same set of 16 relations (2.5). An
expression such as g, = gqp , in which the indices don't balance, is meaningless and
cannot be used.

Light Cones and World Lines

We have already gone through the concept of Light Cones in the previous section involving
the space time diagrams of Special Theory of Relativity. The world line of an object is the
unique path of that object as it travels through 4-
dimensional space-time. The concept of "world line" is
distinguished from the concept of "orbit" or "trajectory” by the
presence of its time dimension. It typically encompasses a large
area of space-time wherein perceptually straight paths are
calculated to show their (relatively) more absolute position

states to reveal the nature of special relativity or gravitational C

Time

interactions.

In other words, the worldline of an object is the sequence
of space-time events corresponding to the history of the object. Y
It is a time-like curve in space time where each of its points is
an event that can be labelled with the time and the spatial
position of the object at that time. Fig.2(a)

For example, the orbitof the Earth in space is
approximately a circle, a three-dimensional (closed)
curve in space: the Earth returns every year to the
same point in space. However, it arrives there at a
different (later) time. The world line of the Earth
is helical in space-time (a curve in a four-dimensional
space) and does not return to the same point. This is
example is represented in Fig.2 (a).

path ot a photon = speed of heht

The use of world lines in general relativity is basically
similar to that in special relativity, with the difference
that in this case, the structure of space-time can
be curved. A metric exists and its dynamics are
determined by the Einstein field equations which
(will be described later in this article) and are
dependent on the mass distribution in space-time.
Again the metric defines light-like (null), space-
like and time-like curves. Also, in general relativity,
world lines are time-like curves in space-time, Fig.2(b)

where time-like curves fall within the light cone. Here, a

light cone is not necessarily inclined at 45 degrees to the time axis due to its curved path
under the influence of gravity as shown in Fig. 2(b). However, any time-like curve admits

13
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a co-moving observer whose "time axis" corresponds to that curve, and, since no observer is
privileged, we can always find a local coordinate system in which light-cones are inclined at
45 degrees to the time axis.

Vectors in Curved Space Time

Our key to defining vectors in curved space-time is to recognize that vectorial quantities-
momentum, velocity, current density, etc. that is those which are represented by vectors-are
all local. They can only be measured by an observer in a laboratory located in a small region of
space-time. The way to define vectors in curved space-time is, therefore, to separate the
notions of magnitude and direction and to define direction locally by means of small vectors,
exactly as a physicist working in a local laboratory would. Vectors are thus defined at a point
and there they obey all the usual flat space- time rules of vector algebra. An assignment of a
vector to each point in space-time in a smooth way, a = a(x), is called a vector field. Vectors
defined at different points, however, are in different tangent spaces, and there is no way of
adding vectors at different points, as there is in flat space-time. Position vector is another
notion that must be abandoned because it is not a local idea. Similarly, displacement vectors
must be abandoned, except for the displacement vector between infinitesimally separated
points, which is a. local quantity.
Thus in curved Space-time, a combination of vectors x in the basis e, (x) is expressed as the
linear combination: a(x) = a®(x) e,(x) (2.6)
The numbers a®(x) are called the components of the vector a in the basis e, (x).
The scalar product between any two vectors a and b at the same point can be computed in
terms of the components if the scalar products of the basis vectors are known in the following
way:
a.b = a%e,.bPeg
= (eq-eg)a”bf (2.7)
We can pick a basis in which the scalar products are anything we like, but two types of bases
are of particular importance: (1)Orthonormal Bases (2)Coordinate Bases

Orthonormal Bases

An orthonormal basis consists of four mutually orthogonal vectors of unit length ez.a =0, 1, 2,
3. Where, hat on the index is used to distinguish the orthonormal bases and components from
other kinds. In space-time three of the orthogonal unit vectors may be space-like but one must
be time-like. The requirements for an orthonormal basis are, therefore, conveniently
summarized by

ea(x).eﬁ(x) = Haﬁ (2.8)
Where nafz =diag(—1,1,1,1) ; so in terms of orthonormal basis components we get the
scalar product between vectors in the form:

a.b =N za®bf (2.9)

The momentum in orthonormal basis is expressed as:P = p®e; and the observed energy is
expressed as: E = —p. Uyps.
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Coordinate Bases

The four-velocity u is a familiar example of a vector. Given a world line x,(7), so the
components of its four-velocity is expected to be

u® =dx*/dr (2.10)
But in order to find what basis these components are in we use the relation dt? = —ds? from
relations (2.1) and (2.2) , then we get:
dx™\ (dx"
s = g, (5) () - a1y

So we find that eqn. (2.10) are the components of the four-velocity in a different kind of ba: (2.12)
where:

eq(x). e[}(x) = gaﬂ(x)

These are the defining relations of a coordinate basis where generally we get:
a.b = g,za”bP (2.13)

What is a Black Hole? (A Physical and Geometric point of view):

A black hole is an object so dense that it sufficiently bends the Space-time around it so that
nothing can escape. The external outermost surface of a Black Hole form which nothing can
escape is called the event horizon. From a physical point of view, we can picture black holes in
terms of escape velocity. For example, on the Earth, if we were to toss a ball into the air, the
overwhelming force of gravity due to the mass of the Earth would cause it to fall back to the
ground. However, suppose we had a launcher that could shoot the ball at much larger
velocities. As we increase the velocity, the ball will go higher before it falls back down. With a
launcher powerful enough, we could even shoot the ball with such a velocity that it would
leave the atmosphere of the Earth and continue on into space. The minimum velocity required
for the ball to leave and not fall back to Earth is called the escape velocity.

Let us continue with a geometrical interpretation of this. Notice that for an object to be a
Black-hole, it must have a sufficiently large density and not mass. Now, we could think of a
space-time without mass as a large flat frictionless rubber sheet, similar to the surface of a
trampoline. If we were to place a bowling ball on this surface, then the sheet would flex in the
region around the ball, but would be flat everywhere else. This is analogous to adding an
isolated static spherically symmetric mass into the space-time, such as a star. Suppose we
place a marble adjacent to the bowling ball, and then tap it so that it rolls up the flexed region.
If we tap it softly, it will roll up the curvature, but then roll back down to the bowling ball. As
we tap it harder, it will roll further up the curvature before falling back until we tap it hard
enough so that it reaches the flat region and continues on in a straight direction.

Like the example above, the minimum velocity of the marble for which it escapes the flexed
region is called the escape velocity. Now, let us increase the density of the bowling ball by
increasing its mass while leaving the size the same. In doing this, the region around the
bowling ball will be deeper and the slope of the flexed region will increase. Then we will have
to tap the marble harder in order for it to make it to the flat region, that is, the escape velocity
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will increase. Now let us increase the mass of the bowling ball (while keeping its size fixed) so
that the flexed region is so deep and the slope is so steep, that the ball can never escape.

We know that there exists a density of the bowling ball such that the marble can never escape
because nothing can travel faster than the speed of light. For heuristic purposes, we can even
pretend photons of light are particles with mass E = mc? as given by the relation from
Einstein’s special theory of relativity. Thus, there is a finite limit to how fast an object can go,
but there is no limit to how large an escape velocity can be. So, if an object is so dense that its
escape velocity is greater than the speed of light, then nothing can escape the gravity of that
object and such a special compact object is called a black hole.
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Chapter 3

GEODESICS, CURVATURE TENSOR AND EINSTEIN FIELD
EQUATIONS

Tensors for General Relativity

So far we have discussed the behavior of vectors in curved space-time and different bases. We
have also described the qualitative concept of a Black Hole in the light of the geometric
curvature of space-time and also from the physical angle of escape velocity. Now we shall
generalize our description further by employing the language and properties of Tensors. Since
we have already realized curved Space-time as the basis of General Relativity it will be natural
for us to take that as the background space for our tensors. The coordinates are no longer
required to have special physical meaning and arbitrary coordinate systems are permitted, as
long as they cover the space-time smoothly (patch wise if necessary). Different such systems
are related to each other by smooth and invertible transformations xl =l (x%) . When we
transform coordinates, tensor components undergo their typical tensor transformations, but
now these usually vary from point to point unlike the universal Lorentz transformations of
Special theory. In curved space-time we can no longer picture vectors as displacements, but
physicists have little trouble picturing them as scalar multiples of differential
displacements dx*. In particular, two directions dx and éx are orthogonal if the following
relation is satisfied:

g dx"8x¥ = 0 (3.1)

Since orthogonal coordinates can considerably simplify the mathematics, it is useful to know
that in 2- and 3-dimensional spaces orthogonal coordinates always exist. However, in higher
dimensions this is unfortunately no longer true. Only in one important respect do the 4-
tensors of Special Theory of Relativity not generalize simply to General Relativity. As the
partial differentiation of tensors is a tensorial operation only as long as the permitted
coordinate transformations are linear—as they are for the Cartesian tensors of classical
physics and the 4-tensors of Special Theory of Relativity. But in General theory of Relativity
non-linear coordinate transformations are forced on us. And yet, neither physics nor
geometry can progress without differentiation. So a more general tensorial operation had to
be found: this came to be known as covariant differentiation. We shall now approach the topic
of Geodesics via Covariant Differentiation.

Geodesics

In general relativity, gravity is formulated as a geometric interpretation, and as such, we must
discard the classical Newtonian view of gravity. Instead, we can think of an object in a
gravitational field as traveling along a geodesic in the 4-dimensional space-time. Due to this
geometric interpretation, geodesics are very important in describing motion due to gravity. A
geodesic is commonly defined as the shortest distance between two points. We are familiar
with a geodesic in flat Euclidean geometry; it is simply a line between the two points. So on a
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sphere it will be a path along any one great circle as
shown in Fig 3(a). However, as we move to 4-dimensional
space-time, it is not always so simple. In calculating the
geodesic on a curved surface of n dimensions of space, the
curvature must be taken into account.

For instance, let us return to our example of the bowling
ball on the frictionless rubber sheet. Suppose we roll a
marble towards the flexed region. Assume that the marble
starts on a flat part of the surface, and that it does not run
into the bowling ball. Then the marble would initially roll
straight toward the flexed region, but upon entering the
curvature, it would appear to bend with the surface and
exit the region heading straight out in a different

direction. This is analogous to the deflection of a comet’s
trajectory by the gravitational influence of the Sun. In
this instance, the marble and the comet are both
following “straight” paths on the curved surface which are both geodesics.

Now we know that the general principle for the motion of free test particles in curved space-
time is the same as that for flat space-time. So using Variational Principle we can say that
“the world line of a free test particle between two time like separated points extremizes the
proper time between them.”

There are only two differences from the flat-space variational principle for free particle
motion when compared to that of curved space: (1) The word test has been added to the
statement to make it clear that it applies the motion of bodies that are not a significant source
of curvature. (2) The proper time is determined by a general metric gog(x) rather than the
flat space-time metric defined through I],, as shown in relation (1.4).

Thus, in general relativity, we will deduce the equations of motion from the variational
principle. Here the extremal proper time world lines are called geodesics, and the equations of
motion that determine them comprise the geodesic equation.

Knowing that proper time is defined by the relation:

"z [ wd? (32)
Ty = -ds* = —gapdx®dx
A A

In order to write this as an integral that we can compute, we consider a parameterized
worldline, x* = x*(0) where the parameter ¢ = 0 at point A and ¢ = 1 at point B. then we
write:

1

1 dx®\ (dxP\]|? opdx*
Tap =j0 l—gaﬁ (%) <%>l where do =J0 L [E,x ]da (3.3)
Here we have introduced the Lagrangian, L [i—’f, x“]
Such that
dt
" do

Therefore, for functionsf = f(z(a)), we have
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df dfdr L df
do drde dt
We will use this later to change derivatives with respect to our arbitrary parameter o to

derivatives with respect to the proper time, t.

Using variational methods as seen in classical dynamics, we obtain the Euler-Lagrange
equations in the form

_ 4 (oL ), oL _ (3.4)
dx (0(‘;—’”)) T =0

Now solving each term of the Euler-Lagrange’s equation, we can arrive at the geodesic
equation, as written below:

e — dx® dxP (3.5)
dr2 ~ " OB ar ar

here the Christoffel symbols satisfy the following relation:

a zl[agys 09yﬂ_096ﬁ] (3.6)
Jay L6 =5 |58 T ox6  axr

This is a linear system of equations for the Christoffel symbols. If the metric is diagonal in the
coordinate system, then the computation is relatively simple as there is only one term on the
left side of Equation (3.5). In general, we do not need to use the metric inverse ofg,g . Another

important property is that the Christoffel symbol is symmetric in the lower indices:
a _ pa
ép — r Bé

We can solve for the Christoffel symbols by introducing the inverse of the metric, g*¥;
satisfying

guygay = 82 (3.7)

Here, 82 is the Kronecker delta, which vanishes for g # a and is 1 otherwise.

Considering that we get:

— SH I o
guygay gﬁ - 6argﬁ - rsp (3.8)
Therefore,
po_1 oy [agys 99y _ 0983}
raﬁ 2 9 axP dx9 axy (3.9)
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The Riemann curvature tensor

We now know that space-time tells matter how to move, and matter tells space-time how to
curve. We even alluded to the metric tensor g,, and its role in characterizing the geometry of

curved space-time. However, we have not yet described in any detail in what way matter, and
specifically mass, influences the curvature of space-time. This relation will be described
through the Riemann Curvature tensor followed by the Einstein Field Equations.

We will now look back to Newton’s Law of Gravitation to give a brief motivation for the
solution to Einstein’s Field Equations as outlined by Faber (1983). We will continue to use
geometrized units, that is, ¢ = G = 1. Suppose a mass M is located at the origin of a 3-

dimensional system (x, y, (x,y,z)with position vector X = (x(t),y(t),z(t)). Let r=
Vx% + y? + z2 and define u, = — )r—( to be the unit radial vector, that is, a vector which points

from X to the mass M at the origin. Then the force Fona particle of mass m located at X is:

Mm__ dzX
= F W emgs

gl

where the second equality comes from Newton’s second law. Such that:

d?X M __

az -
Now let us define @ = &®(r) as the potential function

M
d>(r) = —?

Now we find that using the chain rule, the result gives us:

or {

d 2x* X
dxi Ixi 1

@Xﬂzqzmz__

and

adb B adb ar
dxt  or axt

We may then write
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We can then compare the individual components of the vectors above which give us:

d’xt 9

_ 9% 1
dt2 ~  axi (3.10)

Notice that the left hand side of the above equation looks remarkably like a term in the
geodesic equation given by equation (2). Let us now write the geodesic equation as

d?x* _ ra dx® dxP
FEERRE | i (3.11)
We can then make some general insights on the similarities between equations (3.10) and
(3.11). For instance, equation (3.10) relies on the first partial derivatives of the potential
function and equation (3.11) relies on the first partial derivatives of the components of g,,.
Then, we could imagine that the coefficients given by the metric tensor in general relativity is
analogous to the gravitational potentials of Newton’s theory. In a similar line of reasoning, we
would want a corresponding result for Laplace’s equation which describes gravitational
potentials in empty space. The potential function satisfies Laplace’s equation which is given
by
2e 920 %0

2h —
Vi ==+ oy t52=0 (3.12)

In general relativity, for the analogy to hold, we would need an equation involving the second
partial derivatives of the metric tensor components g,,,. Additionally, we want the equation to

be invariant, so that it is independent of the coordinate system used.

From the treatment given by Faber (1983), the above requirements force our equation to be a
function of RI’}W, which are components of the Riemann curvature tensor, and g,,. The
Riemann curvature tensor is itself a function of the metric coefficients g,,and their first and

second derivatives, and so it relies solely on the intrinsic properties of a surface. So the
Reimann curvature tensor is finally represented by the following relation:

ori, ora
uo nv A A
Rk, = S~ are T rt,ri, —re ra (3.13)
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However from the physical point of view, we know that this equation is only complete if it is
capable of representing the flat space-time of special relativity in one of its solutions. We can
guess that the Riemann curvature tensor would be a good candidate for our equation,
however, to allow for the solution of flat space-time the curvature tensor must be zero.

That is:

(3.14)
Rl,=0

If the curvature tensor, and thus the curvature of our surface, is zero then, we will only have
flat space-time and there will be no gravitational fields. This is too restrictive and so we need
another equation that allows our space-time to have curvature. With this in mind, we will now
look at Einstein’s field equations which do satisfy the above requirements.

Einstein’s Field Equations

We know that we would want the field equations to rely on the metric tensor components g,

and their first and second partial derivatives. It should relate these components, which
describe the curvature of space-time, to the distribution of matter throughout space-time.

In the previous section, we saw that the Riemann curvature tensor was too restrictive.
However, if we set ¢ = A in equation (4.4) and then sum over A we obtain the components of
the less restrictive Ricci Tensor.

Now, The Ricci tensor is obtained from the curvature tensor by summing over one index:

A A
Olyy  orky

R R”"’l axV dxt

+rh,rd, —rirh, (3.15)

Einstein’s vacuum field equations for general relativity are the system of second order
partial differential equations

R

Oja _ Oy 1B ra p
uv - axﬁl’ - axI; +F [' vB [' Fﬁ)l O (316)

where was defined in equation (3.9) as

1 dag ag dag
A _ 2B up vB uv
L 29 axv + ax*  OxP

Hence, the vacuum field equations describe space-time in the absence of mass, and so are

analogous to Laplace’s Equation. The field equations are a system of second order partial

differential equations in the unknown functiong,, . Notice that this relates 16 equations and

16 unknown functions. The g,, determines the metric form of space-time and therefore all

intrinsic properties of the 4-dimensional semi-Riemannian manifold that is space-time,

including curvature. Now if we take into consideration the Hilbert action and solve by varying
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the Riemann Curvature Tensor with respect to the metric tensor, then for the variation of the
Hilbert action for which the extremum is zero we get the Einstein Field equation as:

c4

1 1
167G (R“” B Eg“VR) —3Tw=0

Now, simplifying the above relation we finally obtain the form :

1 8ntG
Ruv - EguvR = 7Tuv (3.17)

where Ry, is the Ricci curvature tensor,
R the scalar curvature,

9uv the metric tensor,
G is Newton's gravitational constant, ¢ the speed of light in vacuum,
Tm, the stress-energy tensor.

However in the case in which the energy-momentum tensor Tuv is zero in the region under

consideration, then the field equations are also referred to as the vacuum field equations. By
setting TLW = 0 the vacuum equations can be written as:

R w= 0
The solutions to the vacuum field equations are called vacuum solutions. Flat Minkowski
space is the simplest example of a vacuum solution. More importantly to serve our intended
purpose we shall consider an important nontrivial solution to the Vacuum Field Equations
which is called the Schwarzschild solution. (the derivations of Einstein’s Vacuum Field
Equations and complete Field Equations are done in detail from the Principle of Action in the

(3.18)

Appendix section)
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Chapter 4
THE SCHWARZSCHILD METRIC

Arriving at the Metric

We start by considering first the Minkowski interval ds? followed by a few subsequent steps
which lead to the formation of the Schwarzschild coordinates and the Schwarzschild metric
which will be done in complete detail in the appendix section of the project. Now, we begin
with:

ds? = c?dt? — dr? — r*(d6? + sin? 0 d¢?)

The term in brackets expresses spherical symmetry or isotropy (no preference for any
direction). Any spherically symmetric metric must have a term of this form. Thus a general

isotropic metric can be written
4.1
ds? = Adt? — Bdt dr — Cdr? — D(d6? + sin? d¢?) (4.1)

e Expect symmetry under ¢ —» —¢,0 — m — 0 so no cross terms withdr dé or df dt.
e A, B, C and D cannot depend on 6 or ¢ otherwise isotropy is broken = functions of
r and t only.

We can define a new radial coordinate r’ such that (r')?> = D, and so the metric becomes:

ds? = A'dt? — B'dtdr' — C'(dr')? — (r')?(d6? + sin? 6 d¢p?) (42)

The above metric is still general. So, dropping the primes, with this radial coordinate, the area
of a sphere is still4mr?2, but r is not necessarily the ruler distance from the origin.

Finally we can transform the time coordinate using
dt = fdt' + gdr,

Choosing f and g such that dt is an exact differential and so that the cross terms in dr dt’'
cancel. We are left with

ds? = A(r, t)dt? — B(r,t)dr? — r2(d6? + sin? 0d¢?) (4.3)
as the general form of an isotropic metric.
We specialize further by looking for time-independent metrics, like:

ds? = A(r)dt? — B(r)dr? — r*(d6? + sin? 0d¢?)
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This is also static as it is invariant under the transformation t —» —t.

Now, we will find the metric around a star such as the Sun, i.e. in empty space where T,z = 0
and=T% =0 = R = 0, so the field equations:

1 8nG
(Rap - ERgaﬂ> == Tap

reduce to
Raﬂ =0
where Rqg comes from

Ry =T"

p p

ap
While
a 1 ad
Ig, = E«g (96y,ﬁ +9psy — gﬁy,s)

Working out I then R followed by much algebra leads to coupled, ordinary differential
equations for A and B and one gets the following relation :

k (4.4)
A = a (1 + ;>,
1
B(r) = a<1+;> ,
Where a and k are constants.
Now by making the following replacements that is: « = ¢? and kK = — ZS—M We arrive at

the Schwarzschild metric:

-1
ds? = c?(1-20) a2 - (1-22Y) " dr? —1?(d6? +sin? 0dgp?) [+

This applies outside a spherically-symmetric object, e.g. for motions of the planets but not
inside the Sun. Schwarzschild’s solution is important as the first exact solution of the field
equations. In geometrized units the Schwarzschild line element has the form:

ds* = (1 - —) dt* — (1 - ZTM)_l dr? —r?(d6? + sin? 0 d¢?) (4.6)
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The coordinates above are called Schwarzschild coordinates and the corresponding metric
Gap (x) is called Schwarzschild metric. Explicitly the metric g, is

p 2GM 0 0 0
¥
26MY\ !
=] © (1-2 0 o | (4.7)
0 0 2 0
i 0 0 —r2sin’8

Birkhoff’s theorem

If one does not impose time-independence, i.e. A = A(r,t),B = B(r,t), and solves Rep = 0,
one still finds Schwarzschild’s solution (Birkhoff 1923), i.e.The geometry outside a spherically
symmetric distribution of matter is the Schwarzschild geometry.

This means spherically symmetric explosions cannot emit gravitational waves.

It also means that space-time inside a hollow spherical shell is flat since it must be
Schwarzschild-like but have M = 0. Flat implies no gravity, the GR equivalent of Newton'’s
“iron sphere” theorem. Used in semi-Newtonian justifications of the Friedman equations.

Properties of Schwarzschild Metric

e Time Independent: The metric is independent of t. There is a Killing Vector &
associated with this symmetry under displacements in the coordinate time t, which has
the components

“=(1,0,00)

e Spherically Symmetric: The geometry of a two-dimensional surface of constant t and

constant r in the four dimensional geometry is summarized by the line element

dX? = r*(d6? + sin? 0 d¢?)
(4.8)
This describes the geometry of a sphere of radius r in flat three-dimensional space. The
Schwarzschild geometry thus has the symmetries of a sphere with regard to changes in
the angles 6 and ¢. The killing vector associated with this symmetry is

n“=(0,0,0,1) (4.9)
_ _ 26M . . .
e Schwarzschild radius: T=c—z Is called the Schwarzschild radius and is the

characteristic length scale for curvature in Schwarzschild geometry.
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5. Gravitational Collapse and Black Holes

The Schwarzschild Black Hole using Eddington-Finkelstein Coordinates

To get at the essential physics of gravitational collapse, let's consider the idealized case where
the collapsing body and the space-time outside it are spherically symmetric. The geometry
outside a spherically symmetric gravitational collapse is the time-independent Schwarzschild
geometry already explored before.

We now have to face up to the singularities in the Schwarzschild metric at the radii r = 2M
and r = 0 and the significance of the change in sign of g;; and g,,- at r = 2M. This section
discusses the properties of the Schwarzschild geometry all the way down to r = 0 without
including the collapsing matter.

The singularity in the Schwarzschild metric at r = 2M turns out not to be singularity in the
geometry of spacetime, but a singularity in Schwarzschild coordinates. It is a coordinate
singularity in the sense discussed earlier. To show this, it is only necessary to exhibit one
coordinate system in which the metric is not singular at r = 2M. There are many, but
Eddington-Finkelstein coordinates are an especially simple example. Using these coordinates
we will be able to understand why the Schwarzschild geometry is a black hole.

To introduce Eddington-Finkelstein coordinates, begin with Schwarzschild coordinates
(t,7,0,¢), in which the metric is summarized as before, and trade the Schwarzschild time
coordinate t for a new coordinate v defined by

t=v—r—2Mlog|ﬁ—1| (5.1)

Starting from either r < 2M or r > 2M and transforming tto v in the line element
discussed earlier, gives:

ds? = — (1 — %) dv? + 2dv dr — r*(d6? + sin? 0 d¢?)
(5.2)

We must take into account however that this is not a new geometry! It's the same time-
independent, spherically symmetric geometry represented by the Schwarzschild metric, but
with a different system of coordinates for labeling the points.

The absence of any singularity at r = 2M in (5.2) shows that the singularity there in
Schwarzschild coordinates is just a coordinate singularity. The line element (5.2) is fit for
describing physics outside, at, and inside the Schwarzschild radius. Its nonsingular character
shows that observers falling through the radius r = 2M will see nothing special about the
local space-time. Eddington-Finkelstein coordinates are therefore useful for the study of
ongoing gravitational collapse.
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Contrast the situation at r = 2M with that at r = 0. There the metric is singular in both the
Schwarzschild and Eddington-Finkelstein coordinate systems. As we will see quantitatively,
r = 0 is a place of infinite spacetime curvature and infinite gravitational forces — a real
physical singularity. Observers falling into r = 0 will definitely see something special about
the local space-time. They will be destroyed and will be sucked into the singularity or
resultant Black-Hole!

Light Cones of the Schwarzschild Geometry

The key to understanding the Schwarzschild geometry as a black hole is the behavior of radial
light rays. These move along world lines for which d8 = d¢ = 0 (radial) and ds? = 0
(null), i.e., from (5.2), those for which

—(1—¥)dv2 +2dvdr =0
(5.3)
An immediate consequence of this is that some radial light rays move along the curves
v = constant (Ingoing radial light rays)

From (5.1) we see that these are ingoing light rays because as t increases, r must decrease to
keep v constant. The other possible solution to (5.3) is

—(1—¥)dv+2dr=o
(5.4)

. d . : s
This can be solved for d—: and the result integrated to find that these radial light rays move on
the curves

Radial light rays (5.5)
Outgoing r > 2M
Ingoing r < 2M

v—2 (r +2Mlog |ﬁ — 1|) = constant

When one of these light rays is far from the black hole, it is outgoing because (5.5) becomes
t = r + constant as (5.1) shows. But when r < 2M, these light rays are ingoing because r
decreases as v increases.
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As shown in Fig (5.1(a)) below, the region outside r = 2M from which light can escape to
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Fig.(5.1(a))

infinity and the region insider = 2M, where gravity is so strong that not even light can
escape. This is the defining feature of a black hole geometry. The surface r = 2M is called the
event horizon (or, often more briefly, just the horizon) of the black hole.

Now, let us briefly look into the geometry of the horizon and singularity of the black hole
under consideration. The horizon 7 = 2M is a three-dimensional null surface in space-time
of the kind discussed generally earlier. Its normal vector points in the r-direction and is a null
vector. Like the future null cone in flat space, the horizon has a one-way property-once
crossed it is not possible to cross back. However, unlike the light cones of flat space, the
horizon is stationary, not expanding. The horizon is generated by those radial light rays that
neither fall into the singularity nor escape to infinity.

Collapse to a Black Hole

The radially moving particles at the surface of the collapsing star follow time-like world lines
that lie inside the light cone at each point of space-time they pass through, just like any other
particle. The world line of the surface of a collapsing ball of pressureless matter that starts
from rest at infinity provides a simple instance that is illustrated in Figures 5(a) and
5(b).Outside the collapsing surface, the geometry of spherically symmetric collapse is the
Schwarzschild geometry, including the horizon after the star has crossed the Schwarzschild
radius r = 2M and the singularity after it hits r = 0. Inside the surface (the heavily shaded
region in Figure 5(a)) the geometry is different, dependent on the detailed properties of the
matter, but matching Schwarzschild geometry at the surface. In the following page we shall
discuss the point of view of two observers in the spherical geometry of a collapsing star and
the formation of a Black Hole along with suitable diagrams and illustrations:
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singularity

Figure 5(a) The story of two observers in the geometry
of a collapsing spherical star:

One observer stays at a fixed Schwarzschild radius rg
outside the star. The other follows its surface to smaller
and smaller radii, sending out light signals at equal
proper time intervals according to a clock falling with
the surface. These light signals propagate out to the
distant observer along the dotted curves shown. Only
light rays emitted before the radius r = 2M is crossed
reach the distant observer. The distant observer,
therefore, never sees the surface of the star cross
r = 2M. The pulses arrive separated by longer and
longer intervals as measured by the distant observer's
clock. The light from the falling star becomes dimmer
and dimmer and increasingly red-shifted. A black hole is
formed. Only the part of this Eddington-Finkelstein
diagram outside the surface of the collapsing star (not
heavily shaded) is meaningful. At the surface, the
geometry matches the geometry inside the star, which is
not the Schwarzschild geometry.

distant ohserver
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- . | Figure 5(b) The formation of a black hole
Some essential features of a spherically symmetric
gravitational collapse that forms a black hole are shown
in this three- dimensional space-time diagram:
Eddington-Finkelstein coordinates (f =v — r,r,¢)
are used as cylindrical coordinates to label points in the
\ 4 diagram — ¢t vertically, r as radius from the axis of
@ symmetry, and ¢ as azimuthal angle about that axis. The
v :? bottom surface is the world sheet swept out by the
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& surface of the collapsing star as it progresses to smaller
, L4 and smaller radii and eventually to a singularity at
" & r = 0. The vertical cylinder is the horizon at the
HIBNE Schwarzschild radiusr = 2M. The horizon conceals
\ the singularity from any distant observer but has been
ﬂ%‘ cut away in the illustration to reveal it. The world line of
XN an observer falling freely from rest at infinity through
IR the horizon and into the singularity is shown. The
orientation of the future light cones at different radii on
one t = constant surface is shown. These tip more
and more toward the center as they get closer to it.
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Thus, once across the Schwarzschild radius r = 2M, gravitational collapse to a singularity is
the inevitable fate of the star. No new source of pressure at high densities can save it from
collapse to zero size and infinite density. As long as the collapse remains spherical, the surface
must travel some time-like radial world line, and all of these lead to the singularity atr = 0.
Even if the star becomes non-spherical inside the horizon, it turns out that collapse to a
singularity is inevitable. For the observer riding down with the star, there is also no way to
escape destruction in the singularity once across the radiusr = 2M.

Non-spherical Gravitational Collapse

We know that the realistic collapse of stars cannot be completely spherical as spherical
collapse is only an ideal case. So let us try to analyze theoretically how much of this picture of
spherical collapse persists in a realistic case by considering the following topics under the
light of Non-Spherical gravitational Collapse:

e Formation of a Singularity: As we have seen, once the surface of a spherical
collapsing star crosses the Schwarzschild radius, 7 = 2M, gravitational collapse to a
singularity is inevitable. The geometry allows no escape from the region inside the
horizon or for the collapse to stop. The formation of a singularity in spherical
gravitational collapse is a specific illustration of the singularity theorems of general
relativity. Roughly speaking, these theorems show that any gravitational collapse that
proceeds far enough results in a singularity in space-time geometry. The singularity
formed in spherical collapse is thus not an artifact of the special symmetry but a
feature of more general collapse situations.

e Formation of an Event Horizon: The singularity formed in spherical collapse is inside
the horizon, hidden from observers outside. The fact that it is hidden is important,
because a singularity is a place where the predictive power of the theory breaks down,
but information about this breakdown can never reach observers outside.

e Area Increase: The area of a black hole increases when mass falls into it in a
spherically symmetric way. However, even if mass falls in a non-spherically symmetric
fashion, the area of the horizon still increases. That is a consequence of the area
increase theorem for black holes. This behavior of the area of a black hole recalls the
increase in entropy in thermodynamics.
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Chapter 6
KRUSKAL EXTENSION AND PENROSE DIAGRAMS

Kruskal-Szekers Coordinates

To understand the complete structure of space-time for r < 2GM , we shall now introduce
the Kruskal-Szekers coordinate system which does away with all of the problems of the metric
being ill-defined at various points. Now we know that the Schwarzschild metric is 4-
dimensional metric. As it has a spherical symmetry we can treat it as 2-dimensional metric.
So, we will only consider r -t’ part and discuss the singularity at r = 2M of the
Schwarzschild metric. So, we can write the metric as:

2M dr?
ds? = (1 - —) az - (6.1)
AR
r
Where, —co<t < 00,0 < r<oo. Now, we will consider null geodesic. In null condition we can write:
ds? — dx® dxP _o
STl T A T 6.2)
Comparing it with equation (6.1), we get,
(6.3)
(1 ZM) (dt)2 4 (1 2M>_1 (dr)2 o
r /\di r da
Solving equation (6.3) and integrating it we get:
6.4
t =+ + 2Mln(L —1)) + const. ©4
- 2M
Henceforth we can define;
(6.5)
r*=1r + 2Mln(L—1)
2M
r* is known as 'Regge-Wheeler-Tortoise’ coordinate. So, we write eqn(6.4) as:
(6.6)
t = £r* + const.
So we get:
(dr ) _ (1 _Z_M) 1 (6.7)
dr r



Now if we define the null coordinates as:

(6.8)
u=t—rx= u—r—ZMln(L —1)
2M
And,
r (6.9)
v= t+r*=v+r+2Mln(ﬂ —1)
Then in this new coordinate, the Schwarzschild metric becomes:
(6.10)
2 2M
ds® = — (1 - —) dudv
r
But in this new coordinate we still have a singularity at r= 2M; so let us write: ( )
6.11

rx=r+ ZMln(ﬁ—l) :v;u

Rewriting the metric from the last equation and multiplying (%) on both sides, we get the

metric in the following form:

(6.12)

2 _

r
2Me_(W) (v—u
ds* = —— e

W) dudv
r

Now, let us define another set of new coordinates such that:

u v
U= —ei™ and V = eam

Then; du = 4Me(_m) dU and dv = 4Me+m dV ; so putting these values of du and dv in
equation (6.12) we get the final form of the metric as:

(6.13)

2

32M3e‘(ﬁ)
ds? = ——

du dv

Now, this metric is not singular at r - 2M so it does not blow up. In this new coordinate
system, the values of r correspond to U=0 and V=0, thus this metric is no longer singular at
this value. So, we have effectively extended the Schwarzschild metric to take U and V all other
values for r>0.r=0 is the physical singular point. This singularity cannot be removed by
transforming coordinates. The scalar curvature Rgp.gR*¢? blows up at r = 0 and becomes
infinite.

So let us now define the final transformation as:

LUV U-V
T and A=

We may also write: dudyv = i (2dUdV + 2dUudy)

U+V)2_ (U;V)Z

dudy = (T
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So, dudy = dT? — dXx?
Therefore if we finally put these above values in equation (6.13) we get the final form of the

metric that is known as the Kruskal-Szekers metric, which is:

r

2 _ 32M3e‘(m)

ds (—dT? + dX?)
(6.14)
In 4-dimensions the Kruskal metric is written as:
32m3e~(2m) (6.15)
ds? = ——— (—dT? + dX?) + r*(d6? + sin*0 d¢?)
So the relation between the old and new coordinates can be shown as:
Tr r

- _ 5 — Y2 — T2 6.16
( >3 1) ez = X2 —T (6.16)

A Space-time diagram has been drawn below which represents the causal structure of the
Schwarzschild metric. The null lines are 45 degrees in Kruskal coordinates. With the help of
this diagram we shall now analyse and discuss the Kruskal extension of the Schwarzschild
metric and its physical implications.

Geometry of the Extended Metric

Figure 6 (a)
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Now let us discuss the singular points and various regions depicted in the above diagram
coined as Figure 6(a). In the original Schwarzschild metric, we have seen that r=0 is singular
point. So let us substitute r = 0 in the extended metric. Doing so we get,

X2 —T2 = —1 (6.16).This is a hyperbolic curve, shown in the figure. There is physical
singularity at r = 0 in the original metric. In the extended metric, we see there is still
singularity at X = +(T2 — 1)1/2.r =0 has space like character here and exists in the region
Il and region III.

In the original Schwarzschild metric, 7 = 2M is a singular point. However, in the extended
metric, it is no-longer a singular point. Thus, we can safely conclude that it is actually a
coordinate singular point. r = 2M is actually corresponds to null rays in the extended space-
time diagram. For, r = 2M, we get from equation (6.16)

X*=T?
or, X=4T

For this, these null lines are labelled as t = 4+o0.r = 2M shows no bad behaviour in the

Kruskal coordinate. In the region r < 2M the metric is given by,

2 (6.17)

(1-5F)

2M
dSZ = —(1—T)dt2+

So, in this region behaviour of space and time gets flipped. The space component becomes
‘time-like’ and the time component becomes ’space-like’. Thus the metric is no longer static
here. Here |x|<|t|, hence it is space like region.

r >2M is the region | in the diagram. This region represents the exterior gravitational field of a
spherical body. The metric is static in this region. In this region, |x|>|t| So, it is a time-like
region. Region I is the original space-time which is observable by physical instruments. It is
our world. Radial in-falling matter crosses the hyperbolae and finally hits the line X= T where
it crosses the horizon. Let us consider, a particle moving radially in the region I happens to
cross the null line X = T and region II. Once it enters this region, it can never escape from it.
After some finite time, it will always fall into the singularity. If it sends a signal before falling
into the singularity, then the signal will also fall into singularity. Thus, this region is called
Black hole. Everything in this region is restricted within the light cone with an angle of 45
degrees and thus nothing, not even light can escape from region II. Region III is the time
reversal of region II. An observer present in III must have been originated in the singularity
and must leave region III again to region L. In the sixties some astronomers speculated that
Quasars might be fuelled by white holes. However, observations at high resolution have
unambiguously shown that the intense emission is due to matter which moves to the Black
Hole and finally vanishes there. Besides these observational evidences the existence of white
holes would cause severe thermodynamic problems. Thus Region III has identical properties
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as region II but time is reversed. Any particle or observer in this region must have originated

from singularity at X = —(T2 — 1)%, and will leave this region after some finite time. This
region is called White Hole. The region III has identical properties as region I. Observer at
region I cannot communicate with the region III. If a signal is sent from the region I, the signal
will go to black hole. Region IV has properties identical with those of region I, and represents
an asymtotically flat region which lies inside of the radius = ry . Region IV and III may be
unphysical solution but region II has great physical importance because this is the
Schwarzschild black hole region.

Conformal Transformation and Penrose Diagrams

The causal structure of General Relativity is best discussed with the help of Penrose Diagrams
which allow us to consider the respective geometry in a compactified form. In order to be able
to draw space-time diagrams that capture the entire set of global properties along with the
causal structure of symmetric space-time; we essentially require a conformal transformation
which would bring the entire structure of infinite space onto a compact region.

A Conformal Transformation is a type of transformation which preserves the geometric angles
and has a domain and range in the complex plane. It is described in terms of a Jacobian
derivative matrix of coordinate transformation. For a conformal transformation, the Jacobian
matrix of transformation everywhere is scalar times the rotation matrix.

A Jacobian Matrix is a matrix of all first order partial derivatives of a vector valued function.
So if F is a real valued function which takes as input ‘n’ real elements and produces as output
‘m’ real elements. Then the partial derivatives of all these functions with respect to variables
X1,X2,...,X, can be organized in an mxn matrix such that the Jacobian matrix ] of F is
epresented as:

- 9F, dF 1 (6.18)
a_‘x'l aes a_xn
] =
aF,, aF,,
[ dx; T x|

Thus, a suitable representation with the help of conformal transformations, such that we can
fit space- time along with its infinities within a finite 2- dimensional diagram is known as a
Penrose Diagram.

Now, in case of choosing an appropriate function that would maintain conformity as well as
take up a range of infinite values; we shall either have to go with the exponential function of
the tangent function. In this case the best representation of Penrose Diagrams is possible if we
either choose the tan inverse function or the tan hyperbolic function. In both the cases we see
that as the value of ‘x’ tends towards infinity, the functions tan~*(x) or tanh(x) tends towards
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a finite number. That is 1.57 or g in case of tan~1(x) and 1 in case of tanh(x). This can be

shown graphically as follows.

tanhx
10

05

-4

-10r

Figure 6 (b)

Figure 6 (b) shows a plot of the function tanh(x) which approaches +1 for co —»x and -1 for
——oo X. This function is thus appropriate to meet our main criteria for making conformal
transformations, i.e. Preserving the light cone and mapping the entire 4 dimensional infinite
space on a finite portion of a 2 dimensional plane.

Now let us first consider the Minkowski space metric in polar coordinates:

ds* = —dt? + dr? + r* (d6? + sin?0 d¢?) ; Where the ranges of time-like and space-like
coordinates are : —o0o <t < o0; 0 <r < oo. Now in order to get coordinates with infinite
ranges, we can choose null coordinates such that: u = t —r,v = t + r; with corresponding
ranges —oo <u < 00;—000 < v < ; v < u.So the Minkowski metric in the null coordinates

is given by : ds? = —% (dudv + dvdu) + i (v —uw)?r? (d6? + sin?0 d¢?) . For the sake of
simplifying calculations, we can also choose u = %(t +r)and v = %(t —1); where v and u

have the same range as specified before. Then in this case the metric in flat space, represented
in null coordinates becomes: ds? = —2 (dudv + dvdu) + (v — u)*r? (d6? + sin?0 d¢?).
Now in order to bring infinity to a finite coordinate we can choose either the inverse tangent
function or the tan hyperbolic function as shown before. So let us choose:

U =tan'(u) and V = tan"'(v) (6.19)

The ranges for these coordinates are: —g <U< +§ and —g <V<+ g; where V < U.

. du . 1
From this we get: dU = —— and since cosu = T
(1+u?)?
29, —
So, cos“u = T2
du
Or, dU =

_— h -1 —
cosz(tan-l(u)) where tan " (u) =U
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: 22 . _ 2 _ 0201 —
Now solving for the (v — u)“ term, we get: (tan U — tanV)* = Uy Sin w-v
Therefore, the metric becomes:
ds? = — ~ [ -2 (dUdV + dVdU) + sin?(U — V)r? ( d6? + sin?0 d¢?)  (6-21)
cos?Ucos?V

The metric in equation (6.21) is conformal in nature, but it has two null coordinates and two
space-like coordinates. So we can improve the situation for ourselves by transforming to a
form with one time-like and three space-like coordinates. This can be achieved by defining

T=U+V and y = U-V (6.22)

with ranges -1 < T < +m,0 < x < +m. The metric now is

ds? = % (—dt? + dy? + sin? xd0?) (6:23)
where dO? = r? (d6? + sin?0 d¢?)
And w = cosU cosV = %(cosz' + cosy),
This can also be written in a better looking form as:
(6.24)

ds* = w?ds?
= —dt? + dy? +sin? y dQ?

So we see that this is a successful conformal transformation as it is just a scalar times the
original metric. Now we can represent this new metric describing Minkowski space in terms
of a Penrose Diagram as shown below.

it

X:

t = const ———

Ir = const ———]
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Figure 6 (c)



Figure 6(c)shows a Penrose Diagram for the Minkowski metric. Here, each point represents a
2-sphere except points at i°,it. This can be seen as sin? y is 0 at y = 0,m, which is to say
that the radius of the sphere at that point becomes 0. So, i% i* are indeed real points. We can
divide the conformal infinities of the Penrose diagram into different regions as follows:

i* = future timelike infinity (t =, x = 0)

i® = spatial infinity (t =0, x = )

i~ = past timelike infinity (t = —m, x = 0)

I'" = future null infinity (t =m—y, 0 < x <)
I” = pastnull infinity (t=—-n+% 0<x <m)

There are a few important points to note about the diagram. The radial null geodesics are at
+45° in the diagram. All timelike geodesics begin at i~ and end at i*, all null geodesics begin
at I and end at I* and all spacelike geodesics begin and end at i®. Another point to note is
that timelike curves which ends at null infinity are possible if they become asymptotically null
(i.e. constant acceleration curves).So, we have indeed fit all of the Minkowski space-time on a
small piece of paper.

Penrose Diagram of Schwarzschild Black Hole

In this case, we start with the null version of the Kruskal coordinates in which the metric takes
the form:

") (6.25)

16M3e~ (20 o o s ,
=f(—dudv +dv'du’) + r*(d0° + sin“0 d¢*)

ds?

T
Where: u'v' = (L - 1) exm
2M
Then we use the same kind of transformation as we had done for Minkowski space in order to
bring infinity to finite coordinate values using:

(6.26)

u N 1 v
I and v' = tan

@M)? @M)?

1

u'’ =tan”

Withranges:—§<u”< +§; §<v”<+§; —rt<u'"+v'<m

The (u”,v”) part of the metric that is at constant angular coordinates is now conformally
related to Minkowski space. In the new coordinates, the singularities at r = 0 are straight
lines that stretch from time-like infinity in one asymptotic region to time-like infinity in the
other. Now we can draw the Penrose Diagram for maximally extended Schwarzschild solution
obtained through the conformal transformations shown above.
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Figure 6 (d)

t = const

I = const

Figure 6(d) shows the Penrose diagram of the Schwarzschild metric. In the figure,i* is known
as future the time-like infinity and i~ is known as past timelike infinity. The time-like geodesic
starts from i~ and terminates at i*. i° is called the space-like infinity. It should be noted that
i*,i” are distinct points from r = 0. I'* Is called future null infinity and I~ is called past null
infinity. We find that there is an event horizon for every observer in region I. We may call this
an eternal Black hole. This feature is absent in the extended diagram of the Minkowski space.
There is an event horizon for accelerating observer. But, in this case, event horizon exists for

non-accelerating observer too. We shall now show the Kruskal diagram of a collapsing star

and discuss its physical implications.

event horizon

j-l"

Figure 6 (e)
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Figure 6(e) shows the Kruskal diagram of a collapsing star resulting in the formation of a
Black Hole. A star can collapse under its own gravitational pull, and shrink down below
r = 2M and eventually end up in the formation of singularity- resulting in a blackhole. The
shaded region shown in the figure is the interior of the star. The Event horizon is also shown
in this figure. It is clear that the event horizon is within the collapsing star. The star will shrink
down below the event horizon and then to the singularity. We can consider two observers-
one being a distant observer and other being on the surface of the collapsing star. In the
figure, the shaded region is the interior of the star. The hyperbola at r > 2M represents the
geodesic of the static observer at large distance. Now let us consider that the observer on the
collapsing star is sending a signal at regular intervals and the distant observer is receiving it.
Then these signals are received by the static observer at longer and longer intervals of proper
time as collapse progresses. The last signal to reach the distant observer is when the observer
will be at r = 2M. Once the observer on the collapsing star crosses the horizon, the signal will
be lost forever in the singularity. The distant observer will not receive anything.

41



Chapter 7
CHARGED BILACK HOLES

The Reissner-Nordstrom geometry

So far we have roughly discussed all the aspects of neutral, static and spherically symmetric
Black Holes along with their various properties and physical implications. We shall now turn
our attention to charged Black Holes and reinvestigate the space-time geometry by modifying
Einstein’s field equations afresh in this new perspective. So we shall now consider the space-
time geometry outside a static, spherically symmetric charged object; once again this is not
based in vacuum, since it is filled with a static electric field whose energy-momentum must be
included in the field equations.

The famous static solution to Einstein’s Field equations which describes the geometry of the
space-time surrounding a non-rotating charged spherical black hole is called the Reissner —
Nordstrom metric. We must also keep in mind that in reality a highly charged black hole
would be quickly neutralized by interactions with matter in its vicinity and therefore such a
solution is not extremely relevant to realistic astrophysical situations. Nevertheless, charged
black holes illustrate a number of important features of more general situations and pave a
way to our understanding of rotating black holes and their inherent mechanisms. However we
shall now focus our attention here on deriving the Reissner — Nordstrom metric
assuming existence of the magnetic monopoles along with electrical charge. To this end, we
shall need to solve the coupled Einstein-Maxwell equations. Because of the spherical
symmetry, the Birkhoff’s theorem suggests the following generic form for the metric in 4D
spherical coordinates {t,r,0, @}:

ds? = —e2erqez 4 e2Prgy2 4 y24()2 (7.1)
Where, dQ? is the metric on a unit two dimensional sphere given by:
dO? = d6? + sin*0d > (7.2)
Now, we already know that Einstein’s equation for general relativity is:
R, - % Rg,, = 8nGT, (7:3)
where R, is the Ricci tensor obtained from the Riemann curvature tensor,
tw = 0T, —0,I'f, +T§,Ih, —Isrh, (7.4)

By contracting A with a. R is the Ricci scalar R = g,,,R,. However, we must keep in mind
that in this case unlike the Schwarzschild metric, R, is not equal to zero. The R.H.S. of the
Einstein Field equations contain the energy-momentum tensor T, which in our problem is
the one for electromagnetism and it is written as:

B , 1 oo (7.5)
Ty = Fy,Fy _Zgqupa F
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Where F, is the electromagnetic field strength tensor and T, has zero trace, which implies:
uv uv v 1 uv po
T =9g"T,, =g Fupr —Zg gw,Fpa FP? = 0
since in 4-dimensions g*”g,,, = 4.1In Eq. (7.4) [s are the connection coefficients given by

1
rauv = Egap(augvp + avgle- - apguv), (7.6)

The fact that T, has zero trace, allows us to rewrite the Einstein’s equation in the following
form:
(7.7)
R, = 8nGT,
Finally, the Maxwell’s equations are:  g"'V,F,; = 0 (7.8)

Where, VV is the covariant derivative operator and the covariant derivative of a rank two
3 H . Vo _ Vo o TAv vV ol
tensor T, is defined to be: v.rve = o,T" +T', T + T ;T (7.9)

Now, we shall analyse the components of the electro-magnetic field tensor. Since there is
spherical symmetry, the only non-zero components of the magnetic and electric fields are the
radial components which should be independent of 8 and ¢. Therefore the radial component
of the electric field has a form of E, = Fy. =—F,; = f(r,0) (7.10)

Whereas, the radial component of the magnetic field is given by:

— 01lpv — 911 _-01wv
Br_gllqup.v_ € qu.v

Jigl
(7.11)
(€"123F,, + € 0132F,,) =2 g1

il NrTib

From Eq.(7.1)we see that g;; = g,(r,t)and |g| x r* sin?@ and since B, doesn’t have

g11

angular dependence, Fg,, must have the following form: Fg, = —F, = g(r,t)r? sin6. All
the remaining components of the electromagnetic field strength tensor are either zero or
related to these two through symmetries. Therefore for the electromagnetic field strength
tensor we obtain,

0 f(rt) 0 0
po_| —fm 0 0 0 (7.12)
pea 0 0 0 g(r,t)r?sin @
0 0 —g(r,t)r?sinf 0

Now we shall utilize the Ricci tensor components that we had calculated for the Schwarzschild
solution which are:

— 2
1. Ry = [0 B + (8:8)* — 8,a8.B] + e*“P[dZa + (3,a)* — 3,20, B t-0,a (7.13)
2 —
2. R,y =—|0%a + (3,@)? — 8,00, —>0,8| + P[0} B +(3,)* — 9,0,

2
3. Ry = - a:.p
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4. Rgg = e ?P[r(0, —0,0) —1] +1
5. Ryp, = Rgp sin®

For the components of the electromagnetic stress tensor using Egs. (7.5) and (7.12) we
obtain:

1 T, :ﬂrz_'t)ze—zmr,t) +9<TT¢>Z e2ar) (7.14)
2. T, = _f_(rz't)z e-2ar) _90;02 2B

3. Ttr =0

4 Ty, =rzg(zr,t)Z _I_rzf(zr,t)Z e-2(atrD+B(rD)

5. Ty = Tgg sin*6

From Egs. (7.13) and (7.14) we have R;,. = 0 which gives B = B(r). Using this fact and Eq.
(7.10), we obtain e2*"Y R, + e?$™R,, = 0. Solving this yields a(r,t) + B(r) = const.but
we can redefine the time coordinate in Eq. (7.1) by replacing dt — e™Stdt so that:

a(r,t) = a(r) = —B(r) (7.15)

Now we shall solve the Maxwell equations for the form of the electromagnetic field strength
tensor given in Eq. (7.12). For the r component of the Eq. (7.8) we have:

o a (7.16)
0.Fy —T'ttFor —T'pFrq = 0

or, carrying out the summation over « gives 8;F;. — F,.(I'ty +T'}.) = 0 (7.17)

Since the metric is diagonal and £ doesn’t depend on time, I, = 0 and '}, = 3,8 = 0 and
from above equation we have 0,F; = 0 implying that the tr component of the
electromagnetic field strength tensor is not time dependent, so Ftr = f(r).

To find the explicit form of f, we will make use of the following identity: for given any anti-
symmetric rank two tensor, T, and diagonal metric the following identity is true:

1
VT =——3,(/IgIT™). (7.18)

HHV_M

If we take into account Eq. (20), for our metric we have|g| = r%sin. Now if we use metric
compatibility condition to raise the indices of the electromagnetic field strength tensor in Eq.
and apply the above identity, we obtain

1 i (7.19)
VHFHV = m au(r smBFm,) = 0.
For the t component we have 9, (r*F,,) = 8,(r’g™g"F,,) = 8, (r*f) = 0,

const (720)

fr) =

r2

For the constant the Gauss’s flux theorem gives const.= Q/v4m where Q is the total electric
charge of a black hole. Now we shall find g (7, t) which is related to the magnetic filed. For this
we need to solve Eq. (7.8) which in explicit form reads

(7.21)
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VuF,p +V,Fou +V,F,, = 0

If we expand above equation using Eq. (7.9), all terms which contain connection coefficients
vanish and we are left with the ordinary partial derivatives

0,F,, + 8,F,, + 0,F, = 0. (7.22)

Considering p = t,v = ¢ and p = 6 combination and using the fact that Fg; = F¢, = 0,
we obtain 8,Fg, = 0 which means that g(r,t) is time independent. Doing the same
forp = r,v = @and p = ¢ combination leads to 8,Fg, = 0or dr(r2g(r)) = 0.Thus

const (7.23)
girt) =—73

Similar to the electric charges, the Gauss’s flux theorem for the magnetic field gives
const.= P/\4mw where P the total magnetic charge of black hole is. Finally, for the
electromagnetic field strength tensor we obtain

0 QOr - 0 0
Fo_ 1 _Q,r—2 0 0 0 (7.24)
B A 0 0 0 Psing
0 0 —Psinf 0

Now we are left with only one unknown variable, a(r) which is given in equation (7.15) . To
this end, one equation is enough to determine the unknown. Let’s now consider the 66
component of the Einstein’s equation, Eq. (7.6):

(7.25)
Rgg = 811'ng

Substituting Rgg and Tyg from relations (7.13) and (7.14) into the above equation and using
relations (7.15) and (7.24), we obtain:
9,(re?®) = 1-2(Q* + P?) (7.26)

Or, eZa =1 +?+%(QZ + PZ) (727)

In the absence of charges, this should reduce to the Schwarzschild solution which allows us to
take the constant to be R¢ = 2GM where M is interpreted as the mass of black hole and G is
the Newton’s gravitational constant. Finally, upon substitution of equations (7.15) and (7.27)
into Equation (7.1), the Reissner — Nordstrom Metric is readily found:

7.28
ds? = —Adt?> + A 1dr? + r2dQ? (7.28)
Where;

2GM
r

Ae 1- (7.29)

G
+-3(Q* + P%)

In summary, we have solved the coupled Einstein-Maxwell equations and found the metric
which describes the geometry of the space-time surrounding a nonrotating black hole
assuming it has static electric and magnetic charges.
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Properties of Charged Black Holes in RN geometry

The Reissner-Nordstrom (RN) metric shown in relations (7.28) and (7.29) is only valid down
to the surface of the charged object. As in our discussion of the Schwarzschild solution,
however, it is of interest to consider the structure of the full RN geometry, namely the solution
to the coupled Einstein-Maxwell field equations for a charged point mass located at the origin
r = 0, in which case the RN metric is valid for all positive r. Calculation of the invariant
curvature scalar Ry,4,R*"?P shows that the only intrinsic singularity in the RN metric occurs
at r = 0. In the ‘Schwarzschild-like’ coordinates(t,r, 8, ¢), however, the RN metric also
possesses a coordinate singularity wherever r satisfies

. 26M G ., . (7.30)
AF) = 1-——+5(Q* + PH=0

with A(r) = =1/g11(r) = goo(r)/c2. Multiplying equation (7.30) throughout by r? and
solving the resulting quadratic equation, we find that the coordinate singularities occur on the
surfaces r = r &+, where:

1

The above equation is written in geometrized units. However, it is clear that there exist three
distinct cases, depending on the relative values of M? and g?; we now discuss these in turn.

e Casel:M? < q%* In this case r+ are both imaginary, and so no coordinate
singularities exist. The metric is therefore regular for all positive values of r. Since the
function r always remains positive, the coordinate t is always time-like and r is always
space-like. Thus, the intrinsic singularity at r = 0 is a time-like line, as opposed to a
space-like line in the Schwarzschild case. This means that the singularity does not
necessarily lie in the future of time-like trajectories and so, in principle, can be avoided.
In the absence of any event horizons, however, r = 0 is a naked singularity, which is
visible to the outside world. The physical consequences of a naked singularity, such as
the existence of closed time-like curves, appear so extreme that Penrose has suggested
the existence of a cosmic censorship hypothesis, which would only allow singularities
that are hidden behind an event horizon. As a result, the case M? < q2 is not
considered physically realistic.

e Case2: M? > g?: In this case, r + are both real and so there exist two coordinate
singularities, occurring on the surfaces r = r +. the situation at r = r + is very similar
to the Schwarzschild case at r = 2M. For r > r +, the function r is positive and so the
coordinates t and r are time-like and space-like respectively. In the region r— <r <
r +, however, r becomes negative and so the physical natures of the coordinates t and r
are interchanged. Thus, a massive particle or photon that enters the surface r =r +
from outside must necessarily move in the direction of decreasing r, and thus r =r +
is an event horizon. The major difference from the Schwarzschild geometry is that the
irreversible in fall of the particle need only continue to the surface r = r —, since for
r <r — the function r is again positive and so t and r recover their timelike and
spacelike properties. Within r = r —, one may (with a rocket engine) move in the
direction of either positive or negative r, or stand still. Thus, one may avoid the
intrinsic singularity at r = 0, which is consistent with the fact that r = 0 is a time-like
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line. Perhaps even more astonishing is what happens if one then chooses to travel back
in the direction of positive r in the region r < r —.On performing a maximal analytic
extension of the RN geometry, in analogy with the Kruskal extension for the
Schwarzschild geometry discussed before, we find that we may re-cross the surface
r =r —, but this time from the inside. Once again one is moving from a region in which
r is space-like to a region in which it is time-like, but this time the sense is reversed and
one is forced to move in the direction of increasing r. Thus r = r — acts as an ‘inside-
out’ event horizon. Moreover, one is eventually ejected from the surface r = r + but,
according to the maximum analytic extension, the particle emerges into a
asymptotically flat spacetime different from that from which it first entered the black
hole.

e Case3: M?= qz: In this case, called the extreme Reissner-Nordstrom black hole,
the function A(7) is positive everywhere except at r = M, where it equals zero.
Thus, the coordinate r is everywhere space-like except at r = M , where it
becomes null, and hence r = M is an event horizon. The extreme case is basically
the same as that considered in case 2, but with the region r— < r < r + removed.

We may illustrate the properties of the RN space-time in more detail by considering the paths
of photons and massive particles in the geometry, which we now go on to discuss. Since the
case M? > q* is the most physically reasonable RN space-time, we shall restrict our
discussion to this situation.

Radial Photon Trajectories in RN Geometry

Let us begin by investigating the paths of radially incoming and outgoing photons in the RN
metric for the case M? > g?. Since ds = d@ = d¢ = 0 for a radially moving photon, we have
immediately from (7.31) that:

de _ 1 _( 2M ¢ ‘1_+1 r? (7.32)
dr ~—c¢ r r2)  Tc\(r-rH)@r-ry)

where, in the second equality, we have used the result (7.31); the plus sign corresponds to an
outgoing photon and the minus sign to an incoming photon. On integrating, we obtain:

r? r ri r . (7.33)
ct=r——In|——-1|+— In|— — 1| + constant (outgoing)
T+ - T_ 1"_ 1"+ - 1"_ 1'+
rz r 2 T , ,
ct=-r+———In|——-1|+ —— In|— — 1| + constant (ingoing)
T+ - T_ T_ T+ - — T+

We will concentrate in particular on the ingoing radial photons. To develop a better
description of in-falling particles in general, we may construct the equivalent of the advanced
Eddington-Finkelstein coordinates derived for the Schwarzschild metric. Once again this
coordinate system is based on radially in-falling photons, and the trick is to use the
integration constant as the new coordinate, which we denote by p. As before, p is a null
coordinate and it is more convenient to work instead with the time-like coordinate t’ defined
by ct’ = p — r. Thus, we have:

(7.34)
47



2

, re r i r
ct =ct— ln|——1‘+ nl—-1
1'+ - 1'_ 1"_ 1"+ - 1"_ r+
On differentiating, or from (7.32) directly, we obtains
1 (7.35)
"= — = ——1
cdt dp — dr = cdt + [ A ] dr

Where A(r) defined in (7.30). Using the above expression to substitute for c in (7.29), one
quickly finds that:

ds? = ¢2Adt’? — 2(1 — Ndt'dr — (2 — A)dr? — r2(d6? + sin? 0 de?) (7.36)
Which is the RN metric in advanced Eddington-Finkelstein coordinates. In particular, we note
that this form is regular for all positive values of r and has an intrinsic singularity at r = 0.
From (7.32) and (7.35), one finds that, in advanced Eddington-Finkelstein coordinates, the
equation for ingoing radial photon trajectories is:

ct' + r = constant (7.37)

Whereas the trajectories for outgoing radial photons satisfy the differential equation:

cdt/  2-A (7.38)

dr A
Figure 7 (a)

Event horizon  Event horizon

\ {

The above figure shows the space-time diagram of the Reissner-Nordstrém solution in
advanced Eddington-Finkelstein coordinates. The straight diagonal lines are ingoing photon
worldliness whereas the curved lines correspond to outgoing photon worldlines.

ry
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We may use these equations to determine the light-cone structure of the RN metric in these
coordinates. For ingoing radial photons, the trajectories (7.37) are simply straight lines at 45°
in a space-time diagram. For outgoing radial photons, (7.38) gives the gradient of the
trajectory at any point in the space-time diagram, and so one may sketch these without
solving (7.38) explicitly. This resulting space-time diagram is shown in Figure 7(a). It is
worth noting that the light-cone structure depicted confirms the nature of the event horizon
atr =r +. Moreover, the lightcones remain tilted over in the region r— < r < r +, indicating
that any particle falling into this region must move inwards until it reaches r = r —. Once in
the region r < r —, the lightcones are no longer tilted and so particles need not fall into the
singularity r = 0.As was the case for the Schwarzschild metric, however, this space-time
diagram may be somewhat misleading. For an outwardmoving particle in the regionr <r —,
Figure 7(a) suggests that it can only reach r = r — asymptotically, but by peforming an
analytic extension of the RN solution one can show that the particle can cross the
surface r = r — in finite proper time.

Penrose Diagrams of RN Solution

Just as we had done Penrose Diagrams to depict the Schwarzschild Black hole using Kruskal
Szekers coordinates and suitable conformal transformations, similarly following the same
analogy we shall construct the Penrose Diagrams for the various regions of the Reissner-
Nordstréom solution as discussed in the previous section. Let us first write the Reissner-
Nordstrém metric that has been previously derived in geometrized units and considering only
the presence of electric charge:

2M Q2 oM 0%\ " (7.39)
ds2=<1——+Q—2> dt2+<1——+Q—2> dr? + r2dQ®
r r r r

Where dQ? = (d6? + sin? 0 d¢?)

Now, as we have seen earlier; multiplying the above equation throughout by 2 and solving
the resulting quadratic equation we can find its coordinate and intrinsic singularities. Thus we
get: rlz (r? — 2Mr + q*) = 0 Here g? = Q2. (In case of the previous relation) So solving this
we obtain singularities at r = r + such that:

7.40
r=M+ {M? - q? (7.40)

The number of real roots in this case will depend on the positivity of ./ M? — g which will be
true when M? > q? and M? = q?. Now for the time being, we shall only deal with the real
solutions keeping aside the imaginary ones in case M? < g?. So the total number of
possibilities in our case will be:

1) Two real roots for M > |q| . Such that r+= M + \/M? — q2.
2) One double real root for M = |q|. Such thatr = M.
3) Noreal roots.

Case 1: Now let us consider the 1st scenario; in this case, the 2 real roots are r, and r_. We
have to write the metric in a convenient form such that:
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(7.41)
ds? = rlz r—r)r—r)de + 2 —r,)(r —r_)ldr? + % dQ?

Due to spherical symmetry we only consider the above portion of the equation for our
calculations which is called the Lorentzian part of the metric. So we have:

7.42
rlz(r—rJr)(r—r_)dt2 +7r2(r—-r)(r—r_)ldr? (7:42)
Let us now consider the radial component such that:
rdr 1 (7.43)
== Jo—ra 1)
Jao-r)r-r) T
Doing this transformation we bring the metric to a conformally flat form so that:
1
ds? = = r—-r)T—-r)dt* +r*(r—r)(r—r_) ldr? (7.44)

1 2 2
= r—z(r—r+)(r—r_) (—dt* + dR*)

We must keep in mind the distinct coordinate regions that are generated form the roots of the
solution; which are: 1) r >r,; 2) r_ <r <r,; 3) 0 <r <r_. Now we shall compare and
analyse with respect to our previously obtained Penrose diagram for flat space as shown
below in Figure 7 (b):

Figure 7 (b)
The above diagram, Figure 7(b) has the following limits:

1) limy_y,, R(T,X) = +o (% <2,x>0)

2) limg_x_, R(T,X) = +oo (% <2,x>0)
3) limp_ysr ROT,X) = 0 (7 <
4) limy_x_, R(T,X) = —oo

dr ) (7.45)

Now from the transformation of the radial part we get: dR = r? (m
)1

2
Integrating this we get: R = f$ or R=1+—

(r-r)@-r.) (r-ry)

(riln|r—r,|-riln|r—r_|) (7.46)
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Now we can carefully consider the three regions and find the corresponding Penrose Diagram
by comparing the limits with the above diagram. The first region has limits lim,_,R(r) = o
and lim,_, R(r) = —oo .The second region has the limits lim,_, R(r) = —o And
m,_,, R(r) = oo . While the third one has lim,_,, R(r) = o and in case of the other side
the diagram terminates atr = 0. Now that we have obtained an overview of all the three
regions, we can construct suitable Penrose Diagrams for each region and combine them to
obtain the complete Penrose diagram of the Reissner-Nordstrom solution for the 15t case

such that; M > |q|.
Figure 7 (c)

=
Il
=
o FT
j—
In Figure 7(c) I* = future null infinity and I~ = past null infinity. r, is the Event
Horizon while r_ is called the Cauchy Horizon. r =0 is a real physical singularity;
however unlike in case of the Schwarzschild Black-Hole , this singularity is time-like and not
space-like hence it can be avoided by an in-falling object. Furthermore the interesting part is
that we can create a repetitive sequence of such Penrose Diagrams shown in Figure 7(c) in

the following way as shown next in Figure 7(d) which basically represents an infinite
sequence of Penrose Diagrams with a some unusual Physical significance.

Figure 7 (d)

I

New Parallel Universe New Universe
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In Figure 7(d) all r = oo represent infinite number of asymptotically flat regions of space.
Thereby, giving rise to the notion of multiple and parallel universes. As we have stated earlier,
the singularity at r = 0 is time-like unlike in case of the Schwarzschild solution. Information
can even be created at singularity and it can pass through other universes through the Worm
Hole. A Worm Hole is essentially a bridge or tunnel like physical solution that connects two
different regions of space-time. The second horizon is called the Cauchy Horizon and it is the
boundary of globally hyperbolic surfaces. However, particles or objects crossing the Cauchy
Horizon may not hit the singularity. An observer starting in region I shall enter the Black Hole
through the Event Horizon and reach region II. The observer may continue through the
Cauchy Horizon into the region where the singularity is present and may avoid the singularity
due to its time-like nature. The observer may continue through the White Hole into another
asymptotically flat region of space-time. Thus exiting the Black Hole the observer lands up in
another Universe. This behaviour is like a Worm Hole connecting two Universes.

Case 2: In the 2nd scenario we consider one double real root. The physical solution in this case
results in something called an Extremal Black Hole; since M? = q2 is an extremal static case
which is between the two distinct real roots solution and the naked singularity generated
from the imaginary solution (which has no physical significance due to the principle of cosmic
censorship therefore it has not been discussed in this article) . So we see that region II has
disappeared since it was defined as the region between the two horizons. Regions III and I
are only present in this case. The line element in this case is given by:

r —m)? r?
ds? = — —( ) di2 + —dr? + r2d0? (7:47)
r? (r —m)?
And the limits of the two regions in the Penrose Diagram are lim,_,R(r) = oo and
lim,_, R(r) = —oo for the first region and lim,_,,. R(r) = o and r = 0 for the second

region. Thus the resultant Penrose diagram and its infinite sequence is as follows:

Figure 7 (e)
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Chapter 8
ROTATING BLACK HOLES

Investigating the Kerr Solution

The Schwarzschild solution describes the space-time geometry outside a spherically
symmetric massive object, characterised only by its mass M. In the previous chapter we
derived further spherically symmetric solutions. Most real astrophysical objects, however, are
rotating. In this case, a spherically symmetric solution cannot apply because the rotation axis
of the object defines a special direction, so destroying the isotropy of the solution .For this
reason, in general relativity it is not possible to find a coordinate system that reduces the
space-time geometry outside a rotating (uncharged) body to the Schwarzschild geometry. The
non-linear field equations couple the source to the exterior geometry. Moreover, a rotating
body is characterised not only by its mass M but also by its angular momentum J, and so we
would expect the corresponding space-time metric to depend upon these two parameters.

In this case, in terms of our ‘Schwarzschild-like’ coordinates (t,r, 0, ¢) the line element for
the Kerr geometry takes the form:

4Macr sin*60
02
2Mra? sin%60

p?

2Mr
p?

—<r2+a2+

2
ds? = ¢2 (1 _ ) de? + dt dp — %drz _ p%de
8.1)

> sin?0d¢?

Where, M and a are constants and we have introduced the functions A and p, defined by:
p? =1?+ a’cos?@ and A=1r?-2Mr + a®

This standard expression for ds? is known as the Boyer-Lindquist form and (¢, 1, 6, ¢) are
known as Boyer-Lindquist coordinates. We can rewrite this above metric in several other
useful forms which are more suggestive of a rotational object. We first define 2 functions:

2 = (r? + a®)? — a*Asin?0 And w = 2Mcra/%? . Thus we rewrite relation (8.1) in a more
convenient form as:

ZA ¥2sin%0 2
P2ezae— (d¢ — wdt)? — %drz _ p?de? (82)

2 _
ds® = P P

The limits of the Kerr Metric depend on the parameters M and a as we might expect for a
rotating body. Moreover, in the limita — 0,

p?>1r? And¥? > 1r*So any of the forms for the Kerr metric above tends to the
Schwarzschild form.
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ds? - c? (1 - %) dt? — (1 — %) dr? —r* d6? — r*sin*0d¢> (8.3)

So M in both the cases corresponds to the mass and a corresponds to the angular velocity of

the body. The fact that the Kerr metric tends to the Schwarzschild metric as a — 0 allows us
to give some geometrical meaning to the coordinates r and @ in the limit of a slowly rotating
body.

Dragging of Inertial Frames

Due to the presence of w in the explicit form of the Kerr metric, it clearly indicates that the
source of the gravitational field is rotating. So we have the remarkable result that a particle
dropped ‘straight in’ from infinity py = 0 is ‘dragged’ just by the influence of gravity so that it
acquires an angular velocity in the same sense as that of the source of the metric. This effect
weakens with distance (roughly as~ 1/r3 for the Kerr metric) and makes the angular
momentum of the source measurable in practice. The effect is called the dragging of inertial
frames. It is important for us to remember at this point that inertial frames are defined as
those in which free-falling test bodies are stationary or move along straight lines at constant
speed. Now, let us consider the freely falling particle discussed above. At any spatial point
(r,0, ¢), in order for the particle to be at rest in some inertial frame the frame must be
moving with an angular speed w(7,0). Any other inertial frame is then related to this
instantaneous rest frame by a Lorentz transformation. Thus the inertial frames are ‘dragged’
by the rotating source.

0

Figure 8 (a)
A schematic illustration of this effect in a plane where 8 = constant is shown in Figure 8(a),
where the spacetime around the source is viewed along the rotation axis.

Structure of a Kerr Black Hole

The Kerr metric is the solution to the empty-space field equations outside a rotating massive
object and so is only valid down to the surface of the object. As in our discussion of the
Schwarzschild solution, however, it is of interest to consider the structure of the full Kerr
geometry as a vacuum solution to the field equations.

Singularities and Horizons:

The Kerr metric in Boyer-Lindquist coordinates is singular when p = 0 and when A= 0.
Calculation of the invariant curvature scalar R,,,,,R""?P reveals that only p = 0 is an intrinsic

singularity. Since:
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p? =1r%+ a’cos?0 = 0.1t follows that this occurs when: r = 0 and 8 = g From our earlier

discussion of Boyer-Lindquist coordinates, we recall that r = 0 represents a disc of
coordinate radius a in the equatorial plane. Moreover, the collection of points with r = 0 and
0= g constitutes the outer edge of this disc. Thus, rather surprisingly, the singularity has the

form of a ring, of coordinate radius a, lying in the equatorial plane. We also see that in terms
of ‘Cartesian’ coordinates, the singularity occurs when x? + y* = a? and z = 0. The points
where A= 0 are coordinate singularities which occur on surfaces:

1 GM
r.=p+ (1? — a®)Z where p = — (8.4)
Event Horizons in the Kerr metric will occur where r = constant is a null 3-surface, and
this is given by the condition g"" = 0 or, equivalently, g,,- = c. From the metric itself it is

2
clear that g, = —%; from which we see that the surfaces r = r + and r = r —, for which

A= 0, are in fact event horizons. Thus, the Kerr metric has two event horizons. In the
Schwarzschild limita — 0, these reduce to r = 2M and r = 0. The surfaces r = r, are
axially symmetric, but their intrinsic geometries are not spherically symmetric. Setting
r =r + and t = constant in the Kerr metric and noting from (8.4) that r?_r +a? =2ur,, we
obtain two-dimensional surfaces with the line elements:

2
2ur (8.5)
do? = p3d6® + <%> sin’@ d¢*
+

Which do not describe the geometry of a sphere. If one embeds a 2-surface with geometry
given by (8.5) in three-dimensional Euclidean space, one obtains a surface resembling an
axisymmetric ellipsoid, flattened along the rotation axis. The existence of the outer horizon
r = r +, in particular, shows that the Kerr geometry represents a rotating black hole. It is a
one-way surface, like r = 2u in the Schwarzschild geometry. Particles and photons can cross
it once, from the outside, but not in the opposite direction. It is common practice to define
three distinct regions of a Kerr black hole, bounded by the event horizons, in which the
solution is regular: Region I, r+ <r < oo; Region I, r—<r <r+; and Region III,
0 <r <r —. ]Just like constructing Penrose diagrams for the Reissner-Nordstrom solution,
we can construct a similar set of diagrams for the corresponding three regions of a rotating
black hole as follows:

I

,ﬁ""

Figure 8 (b)
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Not all values of u and a correspond to a black hole, however. From (8.5), we see that
horizons (at real values of r) exist only for: a? < u?

Thus the magnitude of the angular momentum J = Mac of a rotating black hole is limited by
its squared mass. Moreover, as depicted by the various regions in figure 8 (b) if the condition
a’? < p? is satisfied then the intrinsic singularity at p = 0 is contained safely within the outer
horizonr =1 +.

An extreme Kerr black hole is one that has the limiting value a’ = u? . In this case, the event
horizons r + and r — coincide atr = pu. It may be true that near-extreme Kerr black holes
develop naturally in many astrophysical situations. Moreover, matter falling towards a
rotating black hole forms an accretion disc that rotates in the same sense as the hole. As
matter from the disc spirals inwards and falls into the black hole, it carries angular
momentum with it and hence increases the angular momentum of the hole. The process is
limited by the fact that radiation from the in-falling matter carries away angular momentum.

For the a? > u? case, we find that A>0 throughout, and so the Kerr metric is regular
everywhere except at = 0 , where there is a ring singularity. Since the horizons have
disappeared, this means that the ring singularity is visible to the outside world. In fact, one
can show explicitly that time-like and null geodesics in the equatorial plane can start at the
singularity and reach infinity, thereby making the singularity visible to the outside world.
Such a singularity is called a naked singularity (as mentioned in the previous discussion about
charged Black Holes in Chapter 7) and opens up an enormous realm for some truly wild
speculation. However, Penrose’s cosmic censorship hypothesis only allows singularities that
are hidden behind an event horizon so this case has no real physical significance.

Stationary limit surfaces and the Ergosphere:

In a general stationary axisymmetric space-time the condition g,; = 0 defines a surface that
is both a stationary limit surface and a surface of infinite redshift. For the Kerr metric, we
have:

G = & ( . Zur) _ c?(r* — 2ur + a*cos?0) (8:6)
tt pZ p?

so that (for a*> < u?) these surfaces, S* and S~, occur at:

. (8.7)

rer = p+ (u* — a*cos?0)2

The two surfaces are axisymmetric, but settingr = rg+and t = constant in the Kerr metric,
and noting from (8.5) that rz; + a? = 2urg: + asin?@, we obtain two-dimensional surfaces
with line elements:

2prg: (2prg: + 2a*sin?0)

2
psi

(8.8)

do? = pg+ d6? + sin?0 d¢?

It is clear from the above equation that it does describe the geometry of a sphere. If one
embeds a 2-surface with geometry given by (8.8) in three-dimensional Euclidean space then a
surface resembling an axisymmetric ellipsoid, flattened along the rotation axis, is once more
obtained. In the Schwarzschild limit a — 0, the surface S, reducestor = 2puand S_tor = 0.
As anticipated we see that, in the Schwarzschild solution, the surfaces of infinite redshift and
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the event horizons coincide. The surface S_ coincides with the ring singularity in the
equatorial plane. Moreover, S_ lies completely within the inner horizon r = r_ (except at the
poles, where they touch). The surface S, has coordinate radius 2u at the equator and for all 8
it completely encloses the outer horizon r = r, (except at the poles, where they touch),
giving rise to a region between the two called the Ergoregion. The external surface of this
region is called the Ergosphere.

A
Event horizon r=r* Ring singularity
Stationary limit
surface (infinite
Event horizon r=r" redshift surface) S*
- \
y

|
|
)
Infinite redshift ! Ergosphere
surface S~ ]

]

I

Symmetry'axis (6=0)

Figure 8 (c)
The Ergoregion gets its name from the Greek word ergo meaning work. The key property of
an ergoregion (which can occur in other space-time geometries) is that it is a region for which
git < 0 and from which particles can escape. Clearly, the Schwarzschild geometry does not
possess an ergoregion, since g, < 0 is only satisfied within its event horizon. As we will
discuss in the next section, Roger Penrose has shown that it is possible to extract the
rotational energy of a Kerr black hole from within the Ergoregion.

The Wormhole Behaviour of a Rotating Black Hole

The general notion of a Wormhole is that it is a structural feature of space-time that behaves
like tunnel with two ends, each in separate points in space-time. In other words it is
essentially a shortcut linking two asymptotically flat regions of space-time. Now in case of a
rotating Black hole which has been illustrated and explained throughout our discussions
regarding the Kerr metric; however, so far we have mostly stuck to discussions outside the
ring singularity structure of Kerr Black Holes. We have also noticed that this ring singularity is
time-like and not space-like unlike the normal Penrose diagram of a Schwarzschild Black
Hole.

This feature along with the infinite series of Penrose diagrams that can be generated from the
Kerr solution has interesting hypothetical implications. It may be shown that if a particle
passes through the interior of the ring singularity then it emerges into another asymptotically
flat space-time, but not a copy of the original one. The new space-time is described by the Kerr
metric with r < 0 and hence A never vanishes, so there are no event horizons.
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In the new space-time, the region in the vicinity of the ring singularity has the very strange
property that it allows the existence of closed time-like curves. For example, consider a
trajectory in the equatorial plane that winds around in ¢» while keeping t and r constant. The
line element along such a path is:

2pa® (8.9)

r

dsZ=—<r2+a2+ >d¢2
The above relation is positive if r is negative and small. These are then closed time-like
curves, which violate causality and would seem highly unphysical but nonetheless they seem
to be an extended feature of the Kerr structure. If they represent worldlines of observers, then
these observers would travel back and meet themselves in the past! This is simply however an
analytical extension and it may seem highly improbable that in practice the gravitational
collapse of a real rotating object would lead to such a strange space-time or would be stable
enough for this feature to exist.

Penrose Process of Energy Extraction

As mentioned earlier during our description of the Ergoregion, we shall now discuss the
Penrose process, by which energy may be extracted from the rotation of a Kerr black hole (or,
indeed, from any space-time possessing an ergoregion) in detail. Suppose that an observer,
with a fixed position at infinity, for simplicity, fires a particle A into the ergoregion of a Kerr
black hole. The energy of particle A, as measured by the observer at the emission event(&), is
given by:

Where p®(¥) is the 4-momentum of the particle at this event and u, is the 4-velocity of the

observer, which has components: [uf, | = (1,0,0, 0).Suppose now that, at some point in the

ergoregion, particle A decays into two particles B and C. By the conservation of momentum, at
the decay event (D) one has:
A1
p®(D) = p® (D) +p©(D) (811)

If the decay occurs in such a way that particle C (say) eventually reaches infinity, a stationary
observer there would measure the particle’s energy at the reception event (R) to be:

Where, in the second equality, we have made use of the fact that the covariant time
component of a particle’s 4-momentum is conserved along geodesics in the Kerr geometry,
since the metric is stationary. Similarly, for the original particle we have:

1
p (D) = p (®) (813)
Thus, the time component of the momentum conservation condition (8.11) may be written as:

E© = g@ _ p'(:B) (D) (8.14)
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Where pr)is also conserved along the geodesic followed by particle B. The key step is now to

note that pEB) = e,.p® , where e, is the t-coordinate basis vector, whose squared ‘length’ is
given by; e;.e; = g4. So if particle B were ever to escape beyond the outer surface of the

ergoregion, which is where g, > 0 thene, would be time-like. Thus, p,(:B) would be
proportional to the particle energy as measured by an observer with 4-velocity along the

e; —direction. In this case p,(:B)must therefore be positive, and so (8.14) shows us that E© <

E™), therefore, we get less energy out than we put in. However, if the particle B were never to
escape the ergoregion but instead fall into the black hole, then it would remain in a region
where g, < 0 and so e; would be space-like instead of being time-like. In this case pEB)
would be a component of spatial momentum, which might be positive or negative. For decays
where it is negative, from (8.14) we see that E© > E® and so we have extracted energy

from the Black Hole. This is the Penrose Process of Energy Extraction.
What are the consequences of the Penrose process for the black hole?

Well for an in falling particle once it has fallen inside the event horizon, it changes both the
mass and angular momentum of the Black Hole. For the in-falling particle the Penrose process
reduces both the mass as well as the angular momentum of the Black Hole. This is what is
meant by saying that the Penrose process extracts rotational energy from the black hole.

Let us now illustrate this with a famous thought experiment designed by Sean Carroll. He says
that the idea is simple; if starting from outside the Ergosphere, we arm ourselves with a large
rock and leap toward the black hole. If we call the four-momentum of the (person + rock)
system p(®" | then the energy E© is certainly positive and conserved as we move along our
geodesic. Once we enter the Ergosphere, we can hurl the rock with all our might, in a very
specific way. If we call our momentum p™* and that of the rock p®", then at the instant we
throw it we have conservation of momentum just as in special relativity:

pOr = pWu 4 H@p (8.15)

This basically implies that; E©® = E® 4+ E®), But, if we imagine that we are arbitrarily strong
(and accurate), we can arrange our throw such that E? < 0. Furthermore, Penrose was able
to show that we can arrange the initial trajectory and the throw such that afterwards we
follow a geodesic trajectory back outside the horizon into the external universe. Since our
energy is conserved along the way, at the end we will have: E® > E©), Thus we will have
emerged with more energy than we entered with. This thought experiment along with figure
8(d) below justifies Penrose Process of Energy Extraction from the Ergosphere of a rotating
Black Hole.
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Figure 8 (d)

However we must always keep in mind that energy cannot be created out of nothing. The
energy gained has to come from somewhere, and that somewhere is the black hole. In fact, the
Penrose process extracts energy from the rotating black hole by decreasing its angular
momentum; so we have to throw the rock against the Hole’s rotation to get the trick to work.

Conclusion

Hence we have reached the end of our spectacular journey through space-time, decoding the
mysterious aspects of one of the greatest enigmas in modern science- The Black Hole. We
started with the simple description of flat Minkowski space-time as depicted in Special theory
of Relativity and then gradually developed that concept to introduce the various features of
General relativity, focused on the principle of Equivalence and the fact that Gravity creates the
Geometry of 4-dimensional space-time.

This was followed by an elegant description of curved space-time through the language of
tensors which paved a way to introduce the notion of Geodesics. The derivation of the
Geodesic equation along with the introduction of Christoffel symbols lead us to the concept of
curvature described by the Riemann curvature Tensor and the Ricci tensor. In order to lay the
foundation to explore the deeper aspects of this project we have derived Einstein’s Field
Equations from the Principle of Action using the Curvature Tensor and discussed the physical
significance of each term appearing in our final relation.

After completing the background development we shifted our focus to the primary portion of
this project which involves all the necessary structural and physical details of the various
types of Black Holes and their implications in nature. We started off with deriving the
Schwarzschild solution which describes static neutral Black Holes emerging out of Einstein’s
vacuum Field Equations both using Schwarzschild and Eddington-Finkelstein coordinates.
Looking into the concept of Spherical Gravitational Collapse we have compared the idealized
solution with the probable realistic scenarios in case of Non-Spherical Gravitational Collapse.
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Furthermore we developed the Kruskal extension of the Schwarzschild Metric, thereby
modifying our solution in terms of tortoise coordinates in order to facilitate a geometric and
diagrammatic representation of the solutions embedded in infinite asymptotically flat space
times. Such diagrams which help representing space-time along with all its infinites in a finite
2-dimensional structure are called Penrose Diagrams. We have repeatedly made use of such
diagrams to explain different solutions along with their respective unique implications.

We then turned our focus to the other significantly important types of Black Holes possible in
nature starting with Charged Black holes without angular momentum described by the
Reissner Nordstrom solution. This was followed by our discussion on purely rotating Black
Holes and Charged Black Holes which possess angular momentum, the likes of which have
been developed with the help of the Kerr solution. The idea of wormholes and possible space-
time tunnels linking parallel universes or asymptotically flat regions of space-time have been
elaborately explained as a consequence of Charged and Rotating Black Holes. We have
carefully discussed each scenario of every individual solution in detail, along with their
bizarre and amazing physical implications with the help of Penrose Diagrams. In the end we
have shown how energy can be extracted from Rotating Black Holes by the Penrose Process of
Energy extraction, which also serves as the basis for a thermodynamic approach to studying
Black Holes.

However we must keep in mind that despite having such strong theoretical implications Black
Holes are practically invisible and very hard to locate in nature. It took years of research and
data extrapolation to figure out possible candidate Black Holes. The various methods adopted
for its search vary from Gravitational Lensing to checking for intense gravitational influences
on nearby stars (such as Sagittarius A in our Milky Way) to looking for the evidence of
Accretion Discs surrounding Black Holes.

Today, astronomers have found convincing evidence for a supermassive black hole in the
center of our own Milky Way galaxy, the galaxy NGC 4258, the giant elliptical galaxy M87, and
several others. Scientists verified the existence of the black holes by studying the speed of the
clouds of gas orbiting those regions. In 1994, Hubble Space Telescope data measured the mass
of an unseen object at the center of M87. Based on the motion of the material whirling about
the center, the object is estimated to be about 3 billion times the mass of our Sun and appears
to be concentrated into a space smaller than our solar system.

For many years, X-ray emissions from the double-star system Cygnus X-1 convinced many
astronomers that the system contains a black hole. With more precise measurements
available recently, the evidence for a black hole in Cygnus X-1, and about a dozen other
systems, is very strong and we can all look forward to a promising future with more
experimental evidence of this bizarre enigma!
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APPENDIX

Derivation of Einstein Field Equations from Einstein-Hilbert Action
Principle:

All fundamental physical equations of the classical field including Einstein’s field equations
can be derived from The Variational Principle. The condition required in order to get the field
equation follows from:

8flld4x=0

Of course the quantity above must be an invariant and must be constructed from the metric
Jap Which is a dynamical variable in GR. We shall not include function which is first the
derivative of metric because it vanishes at a point P € M. The Riemann tensor is of course
made from second derivative set of the metrics, and the only independent scalar constructed
from the metric is the Ricci scalar R. The definition of Lagrangian density used here

is L = ,/—gR, therefore:

SEH = j,/—gR d4x

Where Sgy is the Einstein-Hilbert Action. We derive the field equations by variation of this
action in the previous equation. So:

8SEH =0 f,/—ng‘l'x

= J d*x 83/-99"R

= fd‘*x,/—g g®8R,, + fd“x —9g Ry, 69*° +f d*xRé./—g
Now we have three terms of variation that are:
6Sgn = 6Spu) + 6Sgn) + 0SEn(3)

Let us now consider the variation of the first term:

5SEH(1) =Jd4x\/ -9 Rabagab

Considering the variation of the Ricci Tensor:
Rap = Riep = 8.TG, — 8T + Tiqlh, — Thala
8Rap = 06Ty, — 8,8TG, + T'5,8T%y + T'ey8TG, — I4.8T5 — 5,874,
= (98T Gy + T¢adTh, —TGc8Thg — I5c8Taq) = (By8TGe + ThadTGe — IhadTq — The8Tgq)

and the covariant derivative formula is:
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V.8l = 0.6T, + I'eydry, —Ia.érh, —I§.6Ig,
and also:

Vyblee = 8,0TG + T8I —T'5,0T¢y — 58T,
So we can conclude that:

O0Ryp = Vcar::zb — VpbIlg,

Therefore the first part of the Einstein Hilbert action becomes:

8Spnct) = f d*x |-gg® (V.8T%, — V,8T5,)

= f d4x\/ -9 [ Vc (gabarfzb) - ‘Srfzbvcgab - Vb(gabvbsrgc) + argcvbgab]

Remembering that the covariant derivative of the metric is zero, we get:

SSeuy = [ dx |-gg (WaTG, — v48T5)
= [ d*x =g weasrsy) - vi( gsrs)

— [ d*xy=gv. [gsr%, - gort)

This equation is an integral with respect to the volume element of the covariant divergence of
a vector. Using Stokes’s theorem we can easily see that this is equal to a boundary
contribution at infinity which can be set to zero by vanishing the variation at infinity.
Therefore this term contributes nothing to the total variation.

Now we shall carefully consider the variation of the metric g#?. Since the contravariant and
covariant metrics are symmetric matrices so,

gcagab = 6?

. . . 1 T 1
We now consider inverse of the metric: g4, = 7 (A“b) =7 A%b

Where, g is determinant and A?? is the cofactor of the metric gab. Let us fix a, and expand the
determinant g by the a* row. Then:

g = gabAab
If we perform partial differentiation on both sides with respect to g5, then

ag
a.gab

— Aab

Let us now consider the variation of determinant g such that:
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ag
6g = 3g

Sg ab
ab

= Aabagab

= 99°%69

Remembering thatg,j, is symmetric, we get: §g = ggb“Sgab

Using relation obtained above, we get: §,/—g =

=3 J_ 989w

We shall convert from 8¢y, to §g? by considering

662 = 6(gachd) =0
gc‘lsgac + Gac 8QCd =
gc‘lsgac = —Yac 8QCd

Multiply both side of this equation by g4 , we therefore have:

9549°°690c = —9pa9ac09®
agsgac = _gbdgacag‘:d

89ab = —Y9acIpab9%

Substituting this in the previous relation we obtain:

1
5/-9 = - 5\/ —9 9°94c9pa09"
= —= \/ g 829p469%
1 dc
= - 5\/ -9 9cab9

Renaming indices c to a and d to b, we get

1
8=9 = —5V-99a89”

So the variation of the Einstein Hilbert action becomes:

1
8Spy = fd“x,/ gR.,6g™ —= fd“xRJ 9969
4 1 ab
= | d*xy—g [Rap —59aR] 59
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The functional derivative of the action satisfies

58S = fz 25 syatx

YoX

Where { 8¢ '} is a complete set of field varied. Now stationary points are those for which we
58 I ., L o

see thatw = 0. We now obtain Einstein’s equation in vacuum which includes only the

gravitational part of the action but not matter-field part due to the presence of energy-

momentum. The Vacuum Field equations are represented as follows:

1 8Sgy 1
= 5gab = Rap =5 guR = 0

To obtain the complete field equations, we assume that there are other fields present besides
the gravitational field. The action is then represented as:

S = Sen + S
G EH M
Where, S, is the action due to the presence of matter. We shall now normalize the
gravitational action such that we get the right answer. Following the above equation we have:

\/_85—1(R 1 R)+18SM_
9 5g7b ~ 16mG\ ot ~29ab [—g 6gab

We may now define the energy-momentum tensor as:
1 4§
=2 "M
Nt Sgab

This allows us to arrive at the complete Einstein Field Equations:

Tab

1
Rgp _ERgab = 8nGTyy,

We can easily replace the indices a and b with u and v to rewrite the equations in the more
conventional form as:

1
R, _EQIWR = 8mGT,,
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